Multiple Dispatch

As we have seen in Julia, based on different input types we can define the same function with
different methods . For example, let's make a function that computes 2x + y on Int and
x/y on Float64:

# code chunk 20
foo(x::Int,y::Int) = 2x + vy
foo(x::Float64d,y: :Float64) = x/y
@show foo(2.,5) #9

@show fo0(2.0,5.0) #0.4

Julia's multiple dispatch is really one of its defining feature. A lot of people would tell you that
Julia is not object oriented because it is multiple dispatch oriented, so there is dispatch style
that is kind of in the background and this is why things are becoming fast. The reason why this
is really the case is because the way that it's built up as a fast language on top of a JIT
compiler is all based around the way that it changes the functions that it lowers to dependent
on types. So multiple dispatch is actually just a very natural relation where as a user you're
now allowed to tell julia how it should be generating new functions based off the types. This is
actually done all the way down at its very base. So when Julia opens up, first things it actually
defines are integers and floating point numbers and those are defined within the language
itself. Then what it does is defining +(x: : Float64,y: : Float64) and says this is an
Llvm call. so it actually just writes in the [lvm at the lowest level and you can now know what
operation it should be doing. But the nice thing this is actually defined in Julia programming
language itself. It's not built into the compiler so even floating point arithmetic. So all of all
those specializations all the way down are things that are written in the julia language by
using multiple dispatch. This is just it at its highest level as a feature but really what you can
understand then is multiple dispatch is not really just a feature, rather this is actually the core
way that the compiler is actually building optimized code for the inputs because it is now able
to use this to essentially to deduce what the C code would produce if the input types are
given.

# code chunk 20.1
@code_11vm foo(2,5)

So what is happening is you are writing C code except now it's able to know how to get this
specialized versions. Like it knows f00 on integers needs to call the specialized version for
plus between an integer and an integer and it's going to call the specialized version of multiply
for an integer and an integer and so on. The + function in Julia is just defined as +(a, b), and
we can actually point to that code in the Julia distribution:



# code chunk 20.2
@which +(2.0.5)

#+(x::Number, y::Number) in Base at promotion.jl:311

@which promote(2.0,5)
#promote(x, y) in Base at promotion.jl:280

and so on all the way down you can check everything is written Julia. So there is nothing
hidden, everything that is done to make it faster are shown. Now for example you want to
extend foo(x::Int,y::Int) = 2x + yto Int32 we can add the line

# code chunk 20.3
foo(x::Union{Int,Int32} y::Int) = 2x + vy

If you want to make your algorithms fast, then probably you have a different algorithm for
float32, a different algorithm for float64 etc, but you have a compiler that kind of generate
those different variants right. For example if you now write 2X + Yy is going to be optimal for
not just integers but also for all types, then someone already wrote the optimal way for doing
plus or multiply, so you don't need to worry at this level like how do | make sure that it calls
the optimal version of all those functions. Underneath the hood that is just doing multiple
dispatch recursively. You get something fully specialized at the top level without worrying too
much whats going under the hood.

Now let's look at the methods we already have for foo

# code chunk 21
methods (foo)

This will raise an error,

# code chunk 21.1
f00(2.0.,5)

but if we write,

# code chunk 21.2
foo(x,y) = 2x+2y #same as foo(x::Any,y::Any) = 2x+2y

then its fine, but careful do you want it?

Ambiguities



The version that is called is actually the most strict version that is correct. What happens if it's
impossible to define "the most strict version"? For example,

(!!Kill the current terminal because we already defined a lot of foo0 to keep track)

# code chunk 24
foo(x::Float64,y: :Number) = 5x + 2y
foo(x::Number y::Int) = x -y

What should it callon £(2.0,5) now? foo(x::Float64,y: :Number) and
foo(x::Number,y::Int) are both more strict than foo(x: :Number,y: :Number). So
one of them should be called, but neither are more strict than each other, and thus you will
end up with an ambiguity error:

# code chunk 25
f00(2.0,5)

One way to fix this is to define a method lower than both of the above. Look at the error
description, it already suggest that Possible fix, define foo(::Float64,
: : Int64) So you define something like

# code chunk 25.1
foo(x::Float64, y::Int) = 2x -y
f00(2.0,5)

and then its fine
Function Barriers (a hack!)

Since functions automatically specialize on their input types in Julia, we can use this to our
advantage in order to make an inner loop fully inferred. For example,

X = Number[2.0, 4.0] ## this needs some explanation
f(x, y) = x +y
function r(x)

a =4

in 1:100
f(x[1],a)
f(b,c)

f(d,x[2])

o
1l
I = N

v O
1l



end
@btime r(x)

In here, the loop variables are not inferred and thus this is really slow. However, we can force a
function call in the middle to end up with specialization and in the inner loop be stable. This
might look very strange at first

s(x) = _s(x[1],x[2])

function _s(x1,x2)
a =4

in 1:1000
f(xl,a)
f(b,c)
f(d,x2)

o
1l
I = N

v O
I} 1l

end
@btime s(x)

Huge difference, so what is going on? Notice that this algorithm still doesn't infer the outer
part.

@code_warntype s(x)

since the output of _s isn't inferred, but while it's in _s it will have specialized on the fact that
x[1] isa Float64 while x[2] is a Int, making that inner loop fast. In fact, it will only need
to pay one dynamic dispatch, i.e. a multiple dispatch determination that happens at runtime.
But inside it has static dispatch. Notice that whenever functions are inferred, the dispatching is
static since the choice of the dispatch is already made and compiled into the LLVM IR.

Specialization at Compile Time

Julia code will specialize at compile time if it can prove something about the result. For
example:

function fff(x)
if x isa Int

y =2
else
y = 4.0

end



X +y
end

You might think this function has a branch, but in reality Julia can determine whether X is an
Int or not at compile time, so it will actually compile it away and just turn it into the function
X+2 or X+4.0:

@code_11lvm fff(5)

@code_11lvm fff(2.0)

Thus one does not need to worry about over-optimizing since in the obvious cases the
compiler will actually remove all of the extra pieces when it can! So if have more type
information that is possible to use then feel free to use. Note the code is still generic.

Global Scope and Optimizations

This discussion shows how Julia's optimizations all apply during function specialization times.
Thus calling Julia functions is fast. But what about when doing something outside of the
function, like directly in a module or in the REPL?

A = rand(100, 100)

B = rand (100, 100)

C rand (100, 100)

@btime for j in 1:100, i in 1:100
Cli,31 = A[1,3] + B[i,]]

end

This is very slow because the types of A, B, and C cannot be inferred. Why can't they be
inferred? Well, at any time in the dynamic REPL scope | can do something like C = "haha
now a string!", and thus it cannot specialize on the types currently existing in the REPL
(since asynchronous changes could also occur), and therefore it defaults back to doing a type
check at every single function which slows it down.

But if we take the same code and does

function fmat(A, B, C)
for j in 1:100, i in 1:100
Cli,jl = A[i,j] + B[i.,]]
end

end

@btime fmat(A, B, C)



Moral of the story, Julia functions are fast but its global scope is too dynamic to be optimized.



