
2. A short overview of basic syntax
Now let's learn Julia. I will assume you have some previous knowledge in programming. In
particular you are somewhat familiar with the concepts,

variables
arrays or vectors
loops (for and while)
conditionals (if/else)
strings
functions

If you are familiar to some but not all, it's fine for me, but you need to catch up as we go
along. We will discuss these concepts, but definitely not in a way that is appropriate for
someone who is learning these things for the first time.

Versions

I am using the Julia version 1.5.4. However, if you are using 1.5.3., I think it is fine for now.
There is a way we can solve this issue, by creating an environment, but I decided to talk about
this later. At this point I think it is not strictly necessary. However I must admit that creating an
environment is the neat way to solve all kinds of package or version clashes. This also ensures
that an environment for running code is reproducible, so that anyone can replicate the precise
set of package and versions used in construction. So bottom line - this is important but for
later.

Other References

The definitive reference is Julia’s own documentation.

Also look at the page Quantitative Economics with Julia. This lecture is heavily borrowed
from there and the 2020 JuliaCon talk from David Sanders. You will find the complete list of
references below.

The Julia manual or documentation is really thorough piece of work, but also it could be
overwhelming if you are not used to reading manuals (but you will get used to with it
hopefully a�er this course!)

1. Using function in Julia

file:///home/tanvir/ownCloud/Julia_course/TU_Dortmund2021/02.BasicSyntax/02.julia_basics.html
https://docs.julialang.org/en/v1/
https://julia.quantecon.org/index_toc.html

Some functions are built into the Base Julia, such as rand, which returns by default a single
draw from a uniform distribution between 0 and 1. But it can be also be used for other things.
So let's see:

CodeBlock 1.

rand() # draw one random number

rand(10) # draw a vector of random numbers, notice the dimension

rand(3, 3) # draw a matrix of random numbers

rand(1:5) # draw a random number from 1 to 5 (range type, will see later!)

rand(1:5, 2, 4) # a 2 by 4 matrix of random integers between 1 to 5

rand("stat", "business", "econ", "data science", "physics") ## will throw an error

rand(("stat", "business", "econ", "data science", "physics")) ## fine

rand(["stat", "business", "econ", "data science", "physics"]) ## fine

As you can see the rand function looks pretty powerful, it can produce a single random
number or a bunch of random numbers and they can be very di�erent objects. Let's closely
look at rand using the Julia help. The way to do this is, you put a ? in the REPL (read eval
print loop) of Julia, and type rand. Let's analyze the output (output omitted).

Sometimes we might have to use some external packages in Julia to do di�erent things. For
example, for plotting we need the plots package. So let's generate some numbers, save them
in a variable and then plot them, here

CodeBlock 2.

] add Plots ## add the package, this you have to do only once in your lifetime

using Plots # everytime you use any package, you have to use `using`

x = rand(10) # x is a vector

plot(x) # by default it plots a line plot

scatter(x) # this will plot a scatter plot

There is another function which is called randn function which will do exact same thing,
however it will generate random numbers from a standard normal distribution. This means in
this case we can plot the data coming from a so called white noise process,

CodeBlock 3.

n = 100 # number of periods

ϵ = randn(n) # this is the random numbers, notice we used epsilon type \epsilon + <Tab>

plot(1:n, ϵ) # finally plot the line plot!

however we can do this in one line, but in Julia there is no difference

plot(randn(100))

This is what we call the pre-defined or built-in functions in Julia. The functions are already
defined, and we are just calling the functions. However, there is a very important thing you

should observe, that is, the function name is same, but the arguments we are giving are very
di�erent. In fact we can look at all these options at once, if we type another function called
methods, so let's do this.

CodeBlock 4.

methods(rand)

As you can see, this shows all already defined functions of this name in Julia.

✋ So how does Julia know which one we are calling for?

✍ As you can guess based on the arguments, right? This concept in Julia is known as
multiple dispatch. This is more like a key-feature in Julia and we will come back to this again
and again over the course. But for now we have to defer the details of this concept, roughly
what Julia does is, it looks at all arguments and it looks at the types of all arguments, and
then call the appropriate function that matches with the types. If you have the question now,
what do we mean by type of the argument? This is a million dollar question, and we will see
now a bit of types in Julia.

2. About Types

If you are coming from C, C++ background, then you surely know what do we mean by type.
However, if you do not know anything about types at all, and hearing this word for the first
time, then you can think about it is like a characteristic of any data that we give the computer
to process. For example, when we see

2
2.0
"2"

To us humans intuitively it probably means the same thing, however if we want the program to execute systematically, then
we should separate these three objects, right? Because computer do not work intuitively, it works with logic and programs
it is equipped with. Now recall, computer can only process and ? So at the end it is going to be a bunch of 0s and 1s.
This means if we want to differentiate between 2.0 and 2, then representation in the memory of a computer should be
different for 2.0 and 2. I am skipping the details of data representation, but you can look into these beautiful notes by
Professor Chua Hock Chuan at Nanyang Technological University. He gave a very nice and brief summary of data
representation of Integers, Floating-point Numbers, and Characters. Particularly you should see the binary representations,
that should give you feeling of how can we represent differently. Anyways, back to our topic, so for computers these would
be very different objects, and heuristically this is what the idea of type is. When we think about a type in a programming
language we think about a group of objects defined by the language to program systematically. Julia has a very rich type-

0 1

https://www3.ntu.edu.sg/home/ehchua/programming/java/DataRepresentation.html

system, meaning the whole system of types. We will get to the details of types in coming lectures, but for now let's see the
types in action in Julia. The single most useful function for knowing type of any object (by literal meaning object not in
OOP sense) is typeof. So let's use typeof and see some types

julia> typeof(6)

Int64

julia> typeof(6.0)

Float64

julia> typeof("foo baz")

String

julia> typeof(1:3)

UnitRange{Int64}

julia> typeof(1:2:10)

StepRange{Int64,Int64}

julia> typeof('a')

Char

julia> typeof([1, 2, 3])

Array{Int64,1}

julia> typeof(rand(2, 3))

Array{Float64,2}

julia> x = 10 # x is a variable, 10 is the value

10

julia> typeof(x) # the type is for the value NOT FOR THE VARIABLE

Int64

There are di�erent types in Julia, as you can see from the outputs. But all these examples are
what we call concrete types. Concrete types are not the only kinds of types in Julia. There are
also something abstract, which is defined in the Julia language but you cannot instantiate
(meaning you cannot have a value of the type). For concrete types you can think them as
taking specific bits in the memory. For example for Int64 type, it will be an integer to us,
however in the memory it will take 64 bits.

CodeBlock 7.

julia> sizeof(3)

8

Here it shows 8 bytes (1 byte = 8 bits), you can check for others. We can quickly see also some
examples of abstract types. To understand abstract types you can think about that there are
certain types which we cannot instantiate however they define certain hierarchical orderings
and certain relationships between the types in general. Let's see this hierarchical thing in
action. Following commands are really useful,

CodeBlock 8.

julia> supertype(Int64) # concrete type

Signed

julia> supertype(Signed) # abstract supertype

Integer

julia> supertype(Integer) # abstract supertype

Real

julia> supertype(Real) # abstract supertype

Number

julia> supertype(Number) # abstract supertype

Any

julia> supertype(Any) ## So Any is the father of every one in the hierarchy!

Any

julia> import Base.show_supertypes

julia> show_supertypes(Int64)

Int64 <: Signed <: Integer <: Real <: Number <: Any

As we can see once we reach to Any, then there is no supertype. So Any is like the great great-
grandfather of the family of types, which is on the top of the type system. And then gradually
we have other types. Also note a <: b means a is a subtype of b. We can also see subtypes
using following functions,

CodeBlock 9.

julia> subtypes(Integer)

3-element Array{Any,1}:

Bool

Signed

Unsigned

julia> subtypes(Real)

4-element Array{Any,1}:

AbstractFloat

AbstractIrrational

Integer

Rational

Now the interesting thing, we can see the whole hierarchy of types,

CodeBlock 10.

go to package manager and add AbstractTrees

using AbstractTrees # a package to show tree structues

AbstractTrees.children(x::Type) = subtypes(x) ## you will understand this later

print_tree(Real)

this is what we get

julia> print_tree(Real)

Real

├─ AbstractFloat

│ ├─ BigFloat

│ ├─ Float16

│ ├─ Float32

│ └─ Float64

├─ AbstractIrrational

│ └─ Irrational

├─ Integer

│ ├─ Bool

│ ├─ Signed

│ │ ├─ BigInt

│ │ ├─ Int128

│ │ ├─ Int16

│ │ ├─ Int32

│ │ ├─ Int64

│ │ └─ Int8

│ └─ Unsigned

│ ├─ UInt128

│ ├─ UInt16

│ ├─ UInt32

│ ├─ UInt64

│ └─ UInt8

└─ Rational

How cool is that? So it shows the entire type hierarchy for reals. Anyways you get some idea of
the type system in Julia. Some very last remarks,

The concrete types are always in the leaf nodes of the tree, and there is no subtype of
concrete types
Everything else that is on the top of the concrete types are abstract types
We can only instantiate (attach value) for concrete types!

There are also kinds of types called composite types and parmetric types. In fact
the examples of the concrete types that we have seen are called primitive types. But

let's look at the details regarding these issues in coming sections. For now this is good
enough!

3. Again Functions (but user defined)

Suppose there is a vaccine for Covid-19 and a person just received the vaccination, but we
have doubts whether vaccination was any good for us. So maybe we could ask, whether the
person again get infected or not. If we know the probability of getting infected again is , then
the random variable which returns whether the person get infected or not is what we call a
Bernoulli random variable, or a random variable which is distributed as Bernoulli
distribution. Now suppose we know , and we would like to generate some data which
follows this distribution. How can we do this?

In R for example, there is a function called rbinom right? But that is already defined for us.
Similarly here for example we already used a functions rand and randn which are also
predefined and generated some data according to Uniform and Normal distributions. But let's
define our own function which will generate some data points from a Bernoulli distribution (or
we can also say Bernoulli trials)

Here is one possible way to do this! We write following function,

CodeBlock 11.

function infect_again(p)

 r = rand()

 return r < p

end

Let's run the definition and then call the function

CodeBlock 12.

julia> infect_again(0.3)

true

julia> x = 0.2

0.2

julia> infect_again(x)

false

Note the function returns true or false, which is actually another type in Julia, which is called
Boolean type,

p

p

https://en.wikipedia.org/wiki/Bernoulli_distribution

CodeBlock 13.

julia> typeof(infect_again(0.3))

Bool

If you want this to be a integer type then we can call the function which is same as the name
of the type, so for example we can call Int64() or Int32()

CodeBlock 14.

julia> x = 0.4

0.4

julia> data = infect_again(x)

false

julia> data_integer = Int64(data)

0

julia> typeof(data_integer)

Int64

If you have noticed, we did a very interesting thing, that is we used the name of the types (in
this case Int64) as a function! and that converts the value to an Integer type. We will come
back to this again, when we will talk about constructors of types, that is we can use the
name of the types to instantiate (i.e.,create) an object of a particular type.

4. Good Documentation

The manual has a whole chapter about documentation. So you should read this to write
codes in a better way. O�en we ignore this issue, but this is really an important part, if in the
future you would like to share the code and develop a package in Julia. You do not want that
someone will look into your codes and say what the heck this guy did?. In general, we should
help others to understand our code, and in Julia community this is a overall them. Many
packages and functions are used by other packages. Here is a simple documentation for
functions, the strings on the top is what we call docstring.

CodeBlock 15.

"""

 infect_again(p)

retrun boolean type values for a given probability \$0 ≤ p ≤ 1\$

Examples

julia> infect_again(0.2)

false

https://docs.julialang.org/en/v1/manual/documentation/

"""

function infect_again(p)

 r = rand()

 return r < p

end

There are better ways to do this in the documentation, but this is fine for now. Also how to see
the help just type ? and then type infect_again you will see the details of the function
that we just defined.

5. Back to functions again!

✋ Some related questions?

1. Okay maybe not related to functions, but since we used strings, let's ask how to do
operations with string? (concatenation and so on)

2. Can you set the p first and then call it?
3. Can you see the details of the function that you wrote?
4. If you close this session and open a new REPL, then does infect_again remain? does
rand remain?

5. What is this return word doing here? (keyword!)
6. Can we write this function without return, if yes then what is the point of return?
7. Is there a simpler way to define a function, maybe in one line?
8. Do you have the value of r outside the function (i.e., global scope)

Let us think about these questions and answer them gradually!

CodeBlock 16.

"a"*"a" # will concatenate

"a"+"a" # will throw an error.

x = "abncjakkkayl"

x[1] # it will return a character

x[begin]

x[end]

x[end-1]

x[begin:2:end]

x[end-1:end]

Read the Strings in the documentation to know more about strings. For now, we will skip this
and move on.

The second question is obvious, yes we can. For the third we already saw the details. Let's
check 4 by ourselves. return is a keyword that is specifically used if you want your function
to return something. However, Julia by default returns the last line of the function. So if your
return is already the last line, it is not necessary to use this keyword. But if you do some
operations and in your function there is a line which you want to return and that is not the last
line then you can use return. There is definitely a simpler way to write the above function,

Note, we defined the same function twice. Did we replace the old function? YES indeed, later
we will see the concept known as multiple dispatch, which has the idea of defining the same
function for di�erent type of objects (recall we already saw an example rand). But here we
did not do multiple dispatch, rather we defined the same object again, so Julia automatically
replaced the old function.

Cool thing! we can pretend to be mathematicians also in Julia, and write super fancy looking
functions 😃

CodeBlock 18.

ϕ(x) = ℯ^(-x^2)/2 # type \euler + <TAB>

Can you interpret the function we defined? So not with programming language, but intuitively what is going on?

4. Loops

Here is a simple for loop,

poor style

n = 100

ϵ = zeros(n)

for i in 1:n

 ϵ[i] = randn()

end

CodeBlock 17.

infect_again(p) = rand() < p # same function, does exactly same thing, but more compact way

https://docs.julialang.org/en/v1/manual/strings/

Here we first declared ϵ to be a vector of n numbers, initialized by the floating point 0.0. The
for loop then populates this array by successive calls to randn(). Like all code blocks in
Julia, the end of the for loop code block (which is just one line here) is indicated by the
keyword end. The word in from the for loop can be replaced by either ∈ or =. The index
variable is looped over for all integers from 1:n – but this does not actually create a vector of
those indices. Instead, it creates an iterator that is looped over in this case the range of
integers from 1 to n. While this example successfully fills in ϵ with the correct values, it is very
indirect as the connection between the index i and the ϵ vector is unclear. To fix this, we can
use eachindex

better style

n = 100

ϵ = zeros(n) # pre-allocation

for i in eachindex(ϵ)

 ϵ[i] = randn()

end

Here, eachindex(ϵ) returns an iterator of indices which can be used to access ϵ. While
iterators are memory e�icient because the elements are generated on the fly rather than
stored in memory, the main benefit is

(1) it can lead to code which is clearer and less prone to typos; and
(2) it allows the compiler flexibility to creatively generate fast code.

In Julia you can also loop directly over arrays themselves, like so

CodeBlock 22.

ϵ

ϵ_sum = 0.0 # careful to use 0.0 here, instead of 0

m = 5

for ϵ_val in ϵ[1:m]

 ϵ_sum = ϵ_sum + ϵ_val # we can also use e_sum += eval

end

ϵ_mean = ϵ_sum / m

where ϵ[1:m] returns the elements of the vector at indices 1 to m. Of course, in Julia there
are built in functions to perform this calculation which we

CodeBlock 23.

ϵ_mean ≈ sum(ϵ[1:m]) / m # type \approx and hit <tab>

In these examples, note the use of ≈ to test equality, rather than ==, which is appropriate for
integers and other types. Approximately equal, is the appropriate way to compare any floating
point numbers due to the standard issues of floating point math.

check this out!

julia> 0.1 + 0.2

0.30000000000000004

Couple of remarks about loops before we go to the next section

1. Every command in Julia returns something, however for loop returns nothing, nothing
is a value in Julia, which has the type Nothing. Let's take the last command

CodeBlock 24.

julia> x = for i in eachindex(ϵ)

 ϵ[i] = randn()

 end

julia> x

julia> x

julia> typeof(x)

Nothing

If you now type x, it will print absolutely nothing.

2. You can check the syntax for while loop in the manual. Can you think about an example
where we absolutely need while loop? If you can loop using for loop you can definitely use
while loop. However not the other way. There are cases where you do not know
beforehand how long your loop might run, so you need while loop then.

Type issues

You should ask why did we set ϵ_sum = 0.0 ? But before this let us ask if we try to add
apples with oranges, e.g., two apples + three oranges, what would be the result? Well!
Mathematically this might be fine, if we define x apples + y oranges = combined juice, but the
idea is we need to at least think about this before doing these kinds of operations. Maybe the
example is not a good one. But I think this will get the ideas across what I want to say, now if
you ask computer to perform 1+2.0 it will do this for you and return 3.0 however this is not
same as asking to do 1 + 2. The latter is much easy operation because both types are same,
for the former it first need to convert it and then do the operation, which is definitely more
costly than straightforward addition of same types. Let's understand this a bit more. But first

https://floating-point-gui.de/

let me point this out for you operations are also function calls in Julia. Meaning when you are
asking Julia to perform 3 + 3 under the hood it is calling a function like +(3, 3)

CodeBlock 25.

3 + 3

+(3, 3) ## operators are functions

Also try ? +

Now we will use a very fancy but very useful thing in Julia called macro. Think about macro as
a super function, which takes some codes and returns some other codes. This is a really cool
thing in Julia. However we need to use it with caution. Hopefully we will see this as the last
topic.

CodeBlock 26.

@which +(3, 3)

@which +(3, 3.0)

@which +(3.0, 3.0)

@which +(Int64(3), Int64(3))

methods(+)

The case for +(3, 3.0) hints to something called promotion.jl. So let's see what that is,
Ah ha! this calls a functions promote. So what is this promote? So in Julia you have these
two operations, conversion and promotion. Conversion literally converts from one type
to the other, however not all case we can do this!

CodeBlock 27.

julia> convert(Int64, 2.0)

2

julia> convert(Int64, 2.2)

ERROR: InexactError: Int64(2.2)

Stacktrace:

[1] Int64 at ./float.jl:710 [inlined]

[2] convert(::Type{Int64}, ::Float64) at ./number.jl:7

[3] top-level scope at REPL[33]:1

julia> convert(AbstractFloat, "foo")

ERROR: MethodError: Cannot `convert` an object of type String to an object of type Abstra

Closest candidates are:

convert(::Type{T}, ::T) where T<:Number at number.jl:6

convert(::Type{T}, ::Number) where T<:Number at number.jl:7

convert(::Type{T}, ::Base.TwicePrecision) where T<:Number at twiceprecision.jl:250

...

Stacktrace:

[1] top-level scope at REPL[34]:1

However promotion works di�erently than conversion. Promotion means we go to the
common type of all arguments. We can also check the types a�er the promotion takes place

CodeBlock 28.

promote(1, 3.0)

promote_type(Int64, Float64)

promote_type(BigInt, Float64)

So let's have a small glimpse of what happens under the hood, the macro we will use is called
@code_llvm, loosely this prints what the LLVM compiler could compile

julia> @code_llvm 3 + 1

; @ int.jl:86 within `+'

define i64 @"julia_+_1118"(i64, i64) {

top:

%2 = add i64 %1, %0

ret i64 %2

}

julia> @code_llvm 3.0 + 1

; @ promotion.jl:311 within `+'

define double @"julia_+_1120"(double, i64) {

top:

; ┌ @ promotion.jl:282 within `promote'

; │┌ @ promotion.jl:259 within `_promote'

; ││┌ @ number.jl:7 within `convert'

; │││┌ @ float.jl:60 within `Float64'

%2 = sitofp i64 %1 to double

; └└└└

; @ promotion.jl:311 within `+' @ float.jl:401

%3 = fadd double %2, %0

; @ promotion.jl:311 within `+'

ret double %3

}

julia> @code_llvm 3.0 + 1.0

; @ float.jl:401 within `+'

define double @"julia_+_1121"(double, double) {

top:

%2 = fadd double %0, %1

ret double %2

}

Arrays and Tuples (brief overview)

here is a simple example of a random array

a = rand(4) ## where a is a variable, look at the type

a = rand(1, 2)

a = rand(3, 4)

a = rand(3, 4, 3) # multi dimensional

a = rand(3, 4, 3, 2)

typeof(a)

In general we can also construct an array in di�erent ways, and Julia gives us some more than
one options

b = [1, 2, 3]

b = [1 2 3]

b = [1; 2; 3] # same as a the first one

b = [2 3; 4 5]

typeof(b)

c = rand(4, 5)

c[:, 3] ## this is already indexing the array

c[3, :] ## again indexing

c[1, 1]

c[1:2:end, :] # every second row, all columns

c[end-1:end, :] ## last two rows

Checking the size

size(c)

size(c, 1)

size(c, 2)

Arrays are mutable

c

c[1, 2] = 100

c

Copying an array

a = c

a[1] = 99

c ## Note C has changed, so it is not really copying everything again,

also we could check whether a also changes

c[2, 3] = 109

c

a

However if we do want to have a di�erent copy

z = deepcopy(c)

c[1, 4] = 10000

c

z ## z has not changed

In general when we can change an object, we call this behavior mutable. So array is a mutable
object, however for tuple it is not the case. A tuple is a fixed-length container that can hold
any values, but cannot be modified (it is immutable). Tuples are constructed with commas and
parentheses, and can be accessed via indexing. The components of tuples can optionally be
named, in which case a named tuple is constructed.

(1, 1+1)

(1,)

x = (0.0, "hello", 6*7)

x[2] ## indexing works similar to array

Tuple can be very powerful, and using this we can improve the performance a lot, again this is
for later!

map and . (aka broadcasting)

