ECO204 (Section 6) - R lab

Simple Linear Regression

Tanvir

2023-11-20

First we clear the environment

rm(list = 1s())

1 About the Data and Summary Measures

We will do some simple linear regression analysis using a data set in the file Boston.x1sx. This
data set has information about housing values and other information about Boston census tracts.
Let’s first load the data set. Be careful with the setwd () , adjust this with your own directory path.

setwd("/home/tanvir/Documents/ownCloud/Git_Repos/EWU_repos/3_Fall_2023/eco_204/ewu-eco204.gith

# load the library for reading the excel file
library(readxl)

# load the data set
boston <- read_excel("Boston.xlsx")

We can view the data set just by clicking in the environment or by the following command

boston

## # A tibble: 506 x 13

#it crim zn indus chas  nox rm age dis rad tax ptratio lstat
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.00632 18 2.31 0 0.538 6.58 65.2 4.09 1 296 15.3 4.98
# 2 0.0273 0 7.07 0 0.469 6.42 78.9 4.97 2 242 17.8 9.14
# 3 0.0273 0 7.07 0 0.469 7.18 61.1 4.97 2 242 17.8 4.03
## 4 0.0324 0 2.18 0 0.458 7.00 45.8 6.06 3 222 18.7 2.94
## 5 0.0690 0 2.18 0 0.458 7.15 54.2 6.06 3 222 18.7 5.33
## 6 0.0298 0 2.18 0 0.458 6.43 58.7 6.06 3 222 18.7 5.21
## 7 0.0883 12.5 7.87 0 0.524 6.01 66.6 5.56 5 311 15.2 12.4
## 8 0.145 12.5 7.87 0 0.524 6.17 96.1 5.95 5 311 15.2 19.2
## 9 0.211 12.6 7.87 0 0.524 5.63 100 6.08 5 311 15.2 29.9
## 10 0.170 12.5 7.87 0 0.524 6.00 85.9 6.59 5 311 15.2 17.1

## # i 496 more rows
## # i 1 more variable: medv <dbl>



So we have 13 variables and the sample size is 506. Here are some details about the variables.
e crim - per-capita crime rate by town.
e zn - proportion of residential land zoned for lots over 25,000 sq.ft.
e indus - proportion of non-retail business acres per town.
o chas - Charles River dummy variable (= 1 if tract bounds river; 0 otherwise).
 mnox nitrogen oxides concentration (parts per 10 million).
e rm average number of rooms per dwelling.
e age proportion of owner-occupied units built prior to 1940.
e dis weighted mean of distances to five Boston employment centres.
e rad index of accessibility to radial highways.
o tax full-value property-tax rate per $10,000.
e ptratio pupil-teacher ratio by town.
o lstat lower status of the population (percent).
o medv median value of owner-occupied homes in $1000s.

Let’s see some summary statistics, this is simple to see with the summary() function in R

summary (boston)

## crim zZn indus chas

## Min. : 0.00632 Min. : 0.00 Min. : 0.46 Min. :0.00000
## 1st Qu.: 0.08205 1st Qu.: 0.00 1st Qu.: 5.19 1st Qu.:0.00000
## Median : 0.25651 Median : 0.00 Median : 9.69 Median :0.00000
## Mean 3.61352 Mean : 11.36 Mean :11.14 Mean :0.06917
## 3rd Qu.: 3.67708 3rd Qu.: 12.50 3rd Qu.:18.10 3rd Qu.:0.00000
## Max. :88.97620 Max. :100.00 Max. :27.74  Max. :1.00000
## nox rm age dis

## Min. :0.3850 Min. :3.561 Min. 0 2.90 Min. :1.130

## 1st Qu.:0.4490 1st Qu.:5.886 1st Qu.: 45.02 1st Qu.: 2.100

## Median :0.5380 Median :6.208 Median : 77.50 Median : 3.207

## Mean :0.5547 Mean :6.285 Mean : 68.57 Mean : 3.795

## 3rd Qu.:0.6240 3rd Qu.:6.623 3rd Qu.: 94.08 3rd Qu.: 5.188

## Max. :0.8710 Max. :8.780 Max. :100.00 Max. :12.127

## rad tax ptratio 1stat

## Min. : 1.000 Min. :187.0 Min. :12.60 Min. :1.73

## 1st Qu.: 4.000 1st Qu.:279.0 1st Qu.:17.40 1st Qu.: 6.95

## Median : 5.000 Median :330.0 Median :19.05 Median :11.36

## Mean : 9.549 Mean :408.2 Mean :18.46 Mean :12.65

## 3rd Qu.:24.000 3rd Qu.:666.0 3rd Qu.:20.20 3rd Qu.:16.95

## Max. :24.000 Max. :711.0 Max. :22.00 Max. :37.97

# medv

## Min. : 5.00



## 1st Qu.:17.02
## Median :21.20
## Mean :22.53
## 3rd Qu.:25.00
## Max. :50.00

2 Running Simple Linear Regression (SLR)

Now we will start with the simple linear regression modeling. Our goal is to predict medv using
1stat. This means we want to predict the median value of the homes (in 1000$) using the percentage
of the people who are in the lower status. You can expect that there should be a negative association
between 1stat and medv. Let’s see this with the scatter plot,

plot(boston$lstat, boston$medv)
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so our guess is correct. We can also check the sample correlation

cor(boston$lstat, boston$medv)

## [1] -0.7376627

the sample correlation shows high negative correlation in the data. Now let’s fit a regression line. Fit
we will fit the line using lm() function. Always remember the syntax is 1m(dependent variable
~ indepndent variable). Then we will save the output of this function as an object in R. It’s
important that here variables don’t have space in their labels.



model fit <- lm(medv ~ lstat, data = boston)

3 Getting the results

Now everything that we need from the regression results are hidden in the object model_fit. We
can see the summary of the regression results using the summary () function.

summary (model_fit)

#it

## Call:

## 1m(formula = medv ~ lstat, data = boston)

#it

## Residuals:

#it Min 1Q Median 3Q Max

## -15.168 -3.990 -1.318 2.034 24.500

##

## Coefficients:

#Hit Estimate Std. Error t value Pr(>|t])

## (Intercept) 34.55384 0.56263 61.41 <2e-16 **x*
## lstat -0.95005 0.03873 -24.53 <2e-16 **x*
## ——-

## Signif. codes: O 'xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 "' ' 1
#i#t

## Residual standard error: 6.216 on 504 degrees of freedom
## Multiple R-squared: 0.5441, Adjusted R-squared: 0.5432
## F-statistic: 601.6 on 1 and 504 DF, p-value: < 2.2e-16

3.1 Estimated Coefficients, Equation of the Estimated Regression Line and R?

The output of the summary () function is very long. So let’s break it down one by one, first note
that the the estimated regression coefficients are

Bo = 34.55 (1)

By = —0.95 (2)

Equation of fitted regression line is ¢j; = 34.55 — 0.95z;. Or if we want it with the variable names,
we can write

medv = 34.55 — 0.95 x Istat (3)

What’s the interpretation of B = —0.957

The interpretation of —0.95 is that if lstat or the lower status of the population increases by 1
percent then the medv or median value of the home is predicted to decrease by 950 dollars. OR a



decrease of 950 dollars in the median value of the home is associated with a 1 percent increase in
the lower status of the population.

The R? is 0.5441. The line is not a perfect fit, but it’s not bad either. We can see the scatter plot
with the fitted line using the plot () function. We will use the abline () function to add the fitted
line in the scatter plot.

plot(boston$lstat, boston$medv)
abline(model_fit)
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Also we can write that the 54.4% of the variation in the median value of the home is explained by
the variation in the lower status of the population.
3.2 Model Assumptions and Significance Testing

For the simple linear regression model, our model assumption is

Y =080 +8X +e¢

where f(X) = By + 51X is our linear CEF, and
e Y: dependent variable median value of the home or medv.
e X: - independent variable lower status of the population or 1stat
e € error term
e fBo: Unknown Population Intercept Coefficient

e f1: Unknown Population Slope Coefficient



Using linear model assumption, we can easily show that

E(e|]X =2)=0

This means conditional mean of error is 0. This is not a direct assumption, rather this is a result
that we get if we assume linear CEF.

There is also another very important assumption that we will use, that is

V(e|X = ) = o?

This means that the variance of the error term is constant for values of X. This is called the
homokcedasticity assumption. The standard errors of the estimated coefficients, that we use
here are based on this assumption. If this assumption is violated, then the standard errors of the
estimated coefficients will be different, which we don’t cover here, that is called heteroskedasticity.
Under homoskedasticitty we can also show that

V(e| X =x) =V(e)

So this means V(e) = 2.

Notice if 1 = 0, this means in population there is no relationship between the two variables X and
Y. In other words there is no relationship between the median value of the home and the lower status
of the population. If we test this claim, this is called significance testing. So mathematically we
want to do the test

Ho:ﬁlzo
Hy:B81#0

3.2.1 t-test

Now we will do ¢ test to check the claims in the hypotheses. This testing procedure is same as t-test
that we saw before. We will use the t-test statistic to test this claim. The t-test statistic is

BrL—0
SE(f)

calec —

where SE(ﬁl) is the standard error of the slope coefficient ;. The SE(ﬁl) is given in the regression
output. So we can calculate the t-test statistic as



tcalc <- (-0.95 - 0)/0.03873
tcalc

## [1] -24.52879

Notice the value of the ¢-statistic is also given in the output. So now we will compare this with two
critical values £,/p and t;_,/; coming from ¢ distribution with n — 2 degrees of freedom. Here n is
the sample size. We will use the qt () function to get the critical values. leet’s

alpha <- 0.05

n <- nrow(boston)

n

## [1] 506

qt(1 - alpha/2, n - 2)

## [1] 1.964682
gt(alpha/2, n - 2)

## [1] -1.964682
In this case notice our t.q. < —1.964682, so we can reject the Null.

Recall we can do the same test using the p-value.

abs_tcalc <-abs(tcalc)
pvalue <- 2 * (1-pt(abs_tcalc, n - 2))
pvalue

## [1]1 O

The p value looks very very. In fact it is so small that R actually shows 0, so we can reject the Null
at « =0.01 or « =0.05 or @ = .10

Interestingly for this test p value is also calculated by R. It shows that p value is smaller that 2e — 16,
this is a scientific printing, this means it’s smaller than 2 x 106 = 0.0000000000000002. So we can
reject the Null. If you want to stop this scientific printing, you can use the following command

options(scipen = 999)

Now run the summary function again

summary (model fit)
y -

#i#

## Call:

## 1m(formula = medv ~ lstat, data = boston)
##

## Residuals:

#i# Min 1Q Median 3Q Max
## -15.168 -3.990 -1.318 2.034 24.500
#it

## Coefficients:



## Estimate Std. Error t value Pr(>lt])
## (Intercept) 34.55384 0.56263 61.41 <0.0000000000000002 *x*x

## lstat -0.95005 0.03873 -24.53 <0.0000000000000002 x*x*x*
## ——-

## Signif. codes: O '**xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
#i#

## Residual standard error: 6.216 on 504 degrees of freedom
## Multiple R-squared: 0.5441, Adjusted R-squared: 0.5432
## F-statistic: 601.6 on 1 and 504 DF, p-value: < 0.00000000000000022

3.2.2 F - test

The same testing can be done using another test statistic called F-statistic, which can be calculated
using

MSR

Fcalc = WSE

where MSR is the mean square regression and MSE is the mean square error. The MSR is given by

SSR SSR

MSR = Srfor sSR ~ 1

=SSR

where SSR is the sum of squares regression. The M SFE is given by

SSE SSE

MSE = 5 or SSE ~ n -2

where SSFE is the sum of squares error. More details about this sum of squared errors are given in
the slides. We can get all SS and MS using anova() function in R

anova(model _fit)

## Analysis of Variance Table

##

## Response: medv

#t Df Sum Sq Mean Sq F value Pr (>F)

## lstat 1 23244 23243.9 601.62 < 0.00000000000000022 *x*x*
## Residuals 504 19472 38.6

# ——-

## Signif. codes: O 'x*xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Here the testing procedure is same, if the p-value of the F' test statistic is less than «, then we can
reject the Null. In the simple linear linear regression in case of F test we are doing the same test as
t-test and the procedure is also same. If the p < «, then we can reject the Null.



4 Cheking Model Assumptions

There are some assumptions when we fit a linear regression model. See the model assumptions
section in the slides. Now it is possible to check whether our assumptions are correct or not using
the regression results, sometimes this is known as model diagnostics / diagnostic test. We will
now check Assumption 2 (linear model assumption) and Assumption 3 (homoskedasticity) using the
residual plots. There are some ways to check other model assumptions, but we will not cover them
here. .

4.1 Checking Linear Model Assumption

Checking linear model assumption is important. Recall one of the important implications of the
linear model assumption is that the conditional mean of the error term is 0. So we can check this
assumption by plotting the residuals against the fitted values. If the linear model assumption is
correct, then we should not see any pattern in the plot. Let’s plot the residuals against the fitted
values. First note that we can get the residuals by using the function residuals(model_fit). Now
we can plot this with the independent variable.

plot(boston$lstat, residuals(model_fit))
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Interstingly the picture shows a pattern. This means the conditional mean of the error term is not
always 0. So we can conlcude that the linear model assumption is probably not correct. What is
the solution? One solution is fit a nonlinear line and the other solution is taking more variables as
inputs, this is called multiple linear regression. We will see this in the next chapter.

4.2 Checking Homoskedasticity

Using the same plot we can also check the homoskedasticity assumption. Recall the homoskedasticity
assumption is that the variance of the error term is constant. The plot suggests the variancesa
are probably same for different values of the independent variable. So we may conclude that the



homoskedasticity assumption is probably correct.

5 Prediction Interval for the Response and Confidence Interval
for the Mean Response
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