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Statistical Learning and the Problem of Regression

Best Function to Predict
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Best Function to Predict
Conditional Expectation Function

▶ Suppose we have a data set of a company’s sales and money spent on TV, radio and
newspaper advertisement. Here is how the data looks like in studio

▶ It shows we have 200 observations (so sample size is 200), 20 of them is shown and we
have 4 variables.

▶ The units are an important part of the data “Sales” variable is in 1000 unit and other
variables are in 1000$.

▶ Now suppose the company wants to predict the sales based on the other three variables.
▶ Doing some descriptive statistics is often a good idea before we go for inferential statistics.
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Best Function to Predict
Conditional Expectation Function

▶ In this case we can see following scatter plots which shows some association between sales
and each of the variables (what about causality?). Recall scatter plot is a graphical method
to see association between two variables (what are some numerical methods to check
association? Ans: Covariance and Correlation )

▶ We will see how to do scatter plots in our lab session.
▶ To make company’s problem more concrete, we can think about a function f , which will

predict sales based on TV, radio and newspaper expenditure.

Sales ≈ f (TV ,Radio, Newspaper )

▶ We often call this function a model.
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Best Function to Predict
Conditional Expectation Function

▶ Here Sales is a response or target that we wish to predict. Usually we denote the response
with Y .

▶ TV, Radio and Newspaper are called features, or inputs, or predictors or covariates, we usually
denote this with X . In this case, we have 3 features, we can refer to the inputs as X1,X2,
and X3 and often we refer them collectively with a vector,

X =

 X1
X2
X3


▶ Sometimes we also call Y as dependent variable and X as an independent variable.
▶ The problem is we want to predict Y with a function of X which we write as f (X )

▶ Of course our prediction will not be 100% accurate since we may have measurement errors
or leave other variables in our model.

▶ This will lead to some errors in the prediction. Let’s denote the error with ϵ, where
ϵ = Y − f (X ), this is called the CEF error.

▶ With this we can think about the complete model with

Y = f (X ) + ϵ

▶ Now there are many possible options, so quite naturally our question is what is the “best”
possible function of X that we can use to predict Y ?

8 / 84



Best Function to Predict
Conditional Expectation Function

▶ First let’s define what do we mean by “best” here?. Here by “best” we mean minimizing the
mean squared error (in short MSE). MSE is defined as E

[
(Y − f (X )) 2].

▶ So now we can rephrase the question -

“is there a function f that will minimize MSE or E
[
(Y − f (X )) 2], if YES, then what is the

function?”

▶ The question can be also stated mathematically as an optimization problem,

minimize
f

E
[
(Y − f (X )) 2]

▶ I won’t show the calculation here mathematically (but you can look into Hansen (2022) if
you want to see the proof), but the answer is YES, there is a function and the function is
called the conditional expectation function, which we write as,

f (x) = E(Y | X = x)
▶ This means conditioning on the value of X (conditioning means “fixing”), we are taking

average of Y values. What does conditional expectation function mean visually?
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Best Function to Predict
Conditional Expectation Function

▶ Let’s explain this with a single variable. Suppose we have only one variable now, so TV
expenditure and we wish to find the best possible function for X

▶ How does this looks like? First, recall Expectation is population concept so we need to bring
population to explain the concept Conditional Expectation.

▶ Suppose following is the scatter plot of the population data of all sales and TV
expenditures of the company

▶ Then at X = 4 there can be many Y values but if we take expectation, we get the red dot
in the picture, mathematically we can write, E(Y | X = 4)

▶ This is conditional expectation (or you can think average) of Y at X = 4 (or when we think
the value of X as 4)
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Best Function to Predict
Conditional Expectation Function

▶ In this way it is possible to calculate the conditional expectation for all X values, and then
we can connect the points which gives us the conditional expectation function which is the
red line in the picture and which is going to be a function of x , which we can write with
f (x).

▶ So this means

f (x) = E(Y | X = x)
▶ Why CEF could be useful?
▶ Two key reasons

▶ Prediction - With a good f we can make predictions of Y at new points X = x . In this case we are
not interested to know the true f per se, but if we can do good predictions we are happy.

▶ Inference regarding the function and related objects - Prediction is one kind of inference, but there is
another kind, where we want to infer about the true CEF. Maybe we are interested to understand
the true nature of the relationships between the response and predictors, or which predictors are
important in explaining the response. Sometimes this is more difficult and often we have no hope
without imposing strong assumptions.

▶ In the last plot we have only one covariate, but we can also think about this function when
we have multiple variables, like the sales problem that we started, where sales can be
predicted with TV, radio and newspaper expenditure.
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Understanding ϵ
CEF Error - Mean and Variance

▶ We need to mention some important points regarding the CEF error, particularly the
conditional expectation and conditional variance of the CEF error.

▶ We write conditional expectation of error with E(ϵ|X = x) and conditional variance with
V(ϵ | X = x) .

▶ First of all it is easy to show that E(ϵ|X = x) = 0 for all x (see Appendix). Here x can be
any fixed value, for example 0.4 in the figure. In this setting when we are modeling CEF,
this will always hold.

▶ What does this mean visually? Consider following population data of ϵ
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Understanding ϵ
CEF Error - Mean and Variance

▶ Here we plotted x values on the x-axis and ϵ values on the y -axis. So for each x value, we
have many ϵ values and the figure shows if we take average of these ϵ values at every x ,
then the average will be 0 at every x .

▶ If E(ϵ|X = x) = 0, it is possible to show that unconditional expectation E(ϵ) = 0 (this is
an application of law of iterated expectation, but we will not go into details here)

▶ We can also talk about conditional variance V(ϵ | X = x) of the CEF error.
▶ Just using the definition of variances, we can show that conditional variance of ϵ is equal to

conditional variance of Y .
▶ So this means V(ϵ | X = x) = V(Y | X = x) and also unconditional variance are also equal

V(ϵ) = V(Y )

▶ So what is conditional variance? It means variance of Y , conditional on x values. In the
following we plotted two population data where the red line is the CEF function.
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Understanding ϵ
CEF Error - Mean and Variance

▶ One the left the variance of Y seems to be constant with x values, so this means V(Y |X )
or V(ϵ|X ) is constant. This is called homoskedasticity!

▶ On the right the variance of Y is changing with x values (in particular increasing), so this
means V(ϵ|X ) is NOT constant, it is called heteroskedasticity!

14 / 84



Understanding ϵ
CEF Error - Mean and Variance

▶ Now again consider two population data, for both V(ϵ|X = x) is constant. But on the left
V(ϵ|X = x) is high and on the right V(ϵ|X = x) is low

▶ It’s important to note that, if the conditional variance is high then unconditional variance
V(ϵ) is also high.

▶ If we have homoskedasticity for ϵ, which means constant conditional variance of ϵ, then it
is possible to show that V(ϵ) = V(ϵ|X = x)
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Statistical Learning and the Problem of Regression

Estimation of f Parametric vs. Nonparametric
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Estimation of f Parametric vs. Nonparametric

▶ Is it possible to know the population CEF f (x)? The answer is NO, why? - because usually
we never have access to the population data (unless in some very special cases).

▶ Can we estimate it? The answer is YES we can.
▶ There are two kinds of methods for estimating this function,

▶ Parametric method - imposing structural assumption on the function
▶ Non-Parametric method - data driven method, but requires tuning parameters and often need lots

of data for good performance.

17 / 84



Estimation of f Parametric vs. Nonparametric

▶ In this course we will only consider parametric methods of regression. But now we will just
give a short overview of a simple Nonparametric Method known as Nearest Neighbor
Method.

▶ In general in any nonparametric method, we will not impose any functional form on f , and the
entire method will be a data driven method, but there will be external or tuning parameters,
which often influences the quality of the estimation.

▶ Here is a nonparametric way to estimate f ? The idea is rather than taking average at x , we
will take average on the neighbors of x . This is called the Nearest Neighbor Method

▶ Why nearest neighbors? First of all note that typically in a sample we have very few data
points at x , and sometimes no data points at x (think about X = 4), look at the following
picture (note this is a scatter plot of a sample taken from the population data in page 10)
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Estimation of f Parametric vs. Nonparametric

▶ Here at X = 4 we don’t have any point, so we cannot compute E(Y | X = x), but what we
can do is we can take average of the nearest neighbors, which we write as,

f̂ (x) = Ave(Y | X ∈ N (x))
▶ here f̂ (x) is the estimate of f (x), and N (x) means the neighbors around x
▶ Here the tuning parameter is how many neighbors we will consider, or how we will define

the neighbors.
▶ Notice if we take the neighbors as all data points, we will get a horizontal straight line, but

if we get the neighbor very small, then the curve will be very wiggly.
▶ So tuning parameters influence the performance, and this is something we give.
▶ Nearest neighbor averaging can be good for small p - i.e. p ≤ 4 and large sample size n,

but it can give poor performance when p is large.
▶ Reason: the curse of dimensionality, which means the neighbors tend to be far away in high

dimensions, and we need lots and lots of data for good performance.
▶ Curse of dimensionality is typically THE problem of nonparametric methods in general.
▶ Following picture might give you an idea
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Estimation of f Parametric vs. Nonparametric

Figure 1: In the left plot we have only two features, the red point is the point for which we will
find nearest neighbor, the red circle shows 10% of the data points as nearest neighbors. Here is the
radius of the circle
is roughly 0.4.

In the right, the plot shows how we need to increase the radius to get 10% of the data points
as we increase the dimension or the number of features. For example if we have 10 covariates,
to get 10% of the data points as neighbors, the radius has be almost 1.5
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Estimation of f Parametric vs. Nonparametric

▶ Let’s talk about Parametric Methods now.
▶ Parametric Methods generally we will impose assumptions on the structure of f . For

example suppose we assume our model is a linear function of X (extensions possible, we
will come back to the extension later!)

f (X ) = β0 + β1X
▶ Here we are assuming the unknown CEF is linear and β0 and β1 are population parameters.
▶ Why linear model? Although it is almost never correct, a linear model often serves as a good

and interpretable approximation to the unknown true function f (X ).
▶ Once we assume the unknown CEF is linear, the remaining work is to get the parameters β0

and β1, if we want to do prediction.
▶ We can also assume the model has p variables, where X is a p-dimensional vector so,

X = (X1,X2, . . . ,Xp)

f (X ) = β0 + β1X1 + β2X2 + . . . + βpXp

▶ In the next section we will start talking about Simple Linear Regression problem, where we
will assume we have only one covariate to predict the response and the CEF has a linear
form.

▶ In the next chapter (Chapter - 4) we will start talking about Multiple Linear Regression,
where we have many covariates to predict Y .
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Simple Linear Regression Model (SLR)
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Simple Linear Regression Model (SLR)

1. The Problem of Estimation
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Simple Linear Regression
The Problem of Estimation (method of least squares)

▶ Our first parametric method is known as Linear Regression Model. In particular we will talk
about Simple Linear Regression Model or in short SLR in this chapter.

▶ According to Simple Linear Regression Model we will assume the unknown CEF is linear in
X and we have just one feature X .

▶ This means we will assume the true and unknown CEF f (X ) has following form,

f (X ) = β0 + β1X

▶ This actually means, our true CEF looks like the red line in the following figure where β0 is
the intercept and β1 is the slope (Notice here we are assuming following is the scatter plot
of some population data)
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Simple Linear Regression
The Problem of Estimation (method of least squares)

▶ In this case we can write the model with the error as

Y = f (X ) + ϵ = β0 + β1X + ϵ

▶ Now, if we want to know the best prediction function CEF here, our job is to only get the
values of unknown β0 and β1, then we can use CEF to predict Y for any values of X .
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Simple Linear Regression
The Problem of Estimation (method of least squares)

▶ It’s obvious that just from the sample we can never get β0 and β1, so what do we do? We
try to guess the values from a sample data. You should immediately recognize this an
estimation problem.

▶ We explain the estimation method here with a concrete example from Anderson et al.
(2020). Keep in mind, our goal is to estimate the unknown β0 and β0 using a sample.
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Simple Linear Regression
The Problem of Estimation (method of least squares)

▶ Suppose Armand’s Pizza Parlors is a chain of Italian-food restaurants located in a five-state
area. Armand’s most successful locations are near college campuses. The managers believe
that quarterly sales for these restaurants (denoted by y) are related positively to the size of
the student population (denoted by x ); that is, restaurants near campuses with a large
student population tend to generate more sales than those located near campuses with a
small student population. Using regression analysis, we can develop an equation showing
how the dependent variable y is related to the independent variable x . Here is how the data
looks like

Restaurant Population (xi ), in 1000s Sales (yi ), in 1000$
1 2 58
2 6 105
3 8 88
4 8 118
5 12 117
6 16 137
7 20 157
8 20 169
9 22 149

10 26 202

▶ Notice, there is a big difference between the sample data and population data. Sample data
only have very few samples, in this case only 10. Here is the scatterplot of the sample data,
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Simple Linear Regression
The Problem of Estimation (method of least squares)

Figure 2: Scatterplot of Armand’s Pizza Parlor data from Anderson et al. (2020)
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Simple Linear Regression
The Problem of Estimation (method of least squares)

▶ Using this data we can estimate of β0 and β1. Following command will give us the result

code: SLR results for the Armands data

# load the library to read the excel file
library(readxl)
armands <- read_excel("Armand’s.xlsx") # load the data

# fit the model with the data
slr_fit <- lm(Sales ~ Population, data = armands)

## see the output
options(scipen = 999) # turn off scientific printing
summary(slr_fit)

▶ You should see following output,
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Simple Linear Regression
The Problem of Estimation (method of least squares)

Call:
lm(formula = Sales ~ Population, data = armands)

Residuals:
Min 1Q Median 3Q Max

-21.00 -9.75 -3.00 11.25 18.00

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 60.0000 9.2260 6.503 0.000187 ***
Population 5.0000 0.5803 8.617 0.0000255 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 13.83 on 8 degrees of freedom
Multiple R-squared: 0.9027,^^IAdjusted R-squared: 0.8906
F-statistic: 74.25 on 1 and 8 DF, p-value: 0.00002549

31 / 84



Simple Linear Regression
The Problem of Estimation (method of least squares)

▶ We can see a bit formatted output using the stargazer package.

Table 1: Regression results of Quarterly Sales on Population

Dependent variable:
Quarterly Sales (in 1000s)

Student Population (in 1000s) 5∗∗∗

(0.580)

Constant 60∗∗∗

(9.226)

Observations 10
R2 0.903
Residual Std. Error 13.829 (df = 8)
F Statistic 74.248∗∗∗ (df = 1; 8)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

▶ We will often write the estimates with hat symbol. Here the estimate of β0 is β̂0 and the
estimate of β1 is β̂1. Using the data we found β̂0 = 60 and β̂1 = 5.

32 / 84



Simple Linear Regression
The Problem of Estimation (method of least squares)

▶ Using this we can write equation of estimated line or the fitted line, which is,

ŷi = β̂0 + β̂1xi = 60 + 5xi

▶ We can plot the fitted line with the data, this is the red line in the following figure.

▶ After plotting the scatter plot, you can plot this line using the abline() function.

▶ Just to make it clear, note the intercept of this line is β̂0 = 60 and the slope is β̂1 = 5, so
the equation of this line is ŷi = 60 + 5xi , we call this the best fitted line with this data.
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Simple Linear Regression
The Problem of Estimation (method of least squares)

▶ Question is - Why the name best fitted line, what is the meaning of “best” or how did we
calculate 5 and 60? Let’s explain this now

▶ Essentially here best means minimizing sum of squared errors or SSE in the sample. What is
SSE?

▶ If we think ŷi = β̂0 + β̂1xi is the estimated line, then the error (also called residual) is

ei = yi −
(

β̂0 + β̂1xi
)

▶ the squared error is

e2
i = (yi − ŷi )

2 =
(

yi −
(

β̂0 + β̂1xi
))

2

▶ And sum of squared errors, in short SSE is

SSE =
n
∑
i=1

e2
i =

n
∑
i=1

[
yi −

(
β̂0 + β̂1xi

)]
2

▶ So no we can write the problem clearly, our problem is we need to find a line which minimizes
SSE
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Simple Linear Regression
The Problem of Estimation (method of least squares)

▶ Since we are fitting linear line, this means we need to find β̂0 and β̂1 such that SSE is
minimized.

▶ We can write this as a following optimization (in particular minimization) problem

minimize
β̂0,β̂1

n
∑
i=1

[
yi −

(
β̂0 + β̂1xi

)]
2

▶ Actually this is a multivariate minimization problem where we need to minimize the SSE
function with respect to β̂0 and β̂1. Following picture might be useful to think what’s
happening here

▶ Why? Because you can think SSE is a function of β̂0 and β̂1 and we are looking for the
optimal β̂0 and β̂1 which will minimize this function.
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Simple Linear Regression
The Problem of Estimation (method of least squares)

▶ So far we explain the algebraic way of understanding the problem, which is related to the
optimization problem, there is another way to think about what’s happening,

▶ Here the vertical lines are the errors, e1, e2, . . . , en and we are essentially minimizing the
sum of the squared of these errors.
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Simple Linear Regression
The Problem of Estimation (method of least squares)

▶ So following is the minimization problem

minimize
β̂0,β̂1

n
∑
i=1

[
yi −

(
β̂0 + β̂1xi

)]
2

▶ I will skip the details here (you will see more details in the Econometrics course and I will try
to give you some additional notes), but if we solve this minimization problem (this means
taking derivatives, setting the equations to 0 and then solving), the optimal coefficients are

β̂∗
1 =

∑n
i=1 (xi − x̄) (yi − ȳ)

∑n
i=1 (xi − x̄) 2 and β̂∗

0 = ȳ − β̂1x̄

▶ We gave ∗ to represent that these are optimal points, usually we will omit ∗.

▶ There is another way we can write β̂1,which is using he sample covariance and variance
formulas

ĉov(x , y) = ∑ (xi − x̄) (yi − ȳ)
n − 1 sample covariance (1)

s2
X =

∑ (xi − x̄) 2

n − 1 sample variance (2)

where s2
X is the sample variance of X , so we can write β̂1 =

ĉov(x ,y)
s2
X
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Simple Linear Regression
The Problem of Estimation (method of least squares)

▶ Recall, there is a difference between sample variance and population variance.

▶ This method is famously known as method of least-squares and the fitted line is called the
least squares line (often also called estimated regression line also sample regression
function).

▶ Finally we write the formula for the estimated coefficients again

β̂1 =
∑n

i=1 (xi − x̄) (yi − ȳ)
∑n

i=1 (xi − x̄) 2 and β̂0 = ȳ − β̂1x̄ (3)

▶ Now let’s interpret the coefficients. Recall the estimated equation is

ŷi = 60 + 5 xi

▶ We can also write the estimated equation with the original variable names, rather than x
and y ,

ŝales = 60 + (5 × population )

▶ What is the interpretation of the estimated coefficients?

▶ For the interpretation the units are very important. Recall, the data of the student
population is in 1000s, and the data of sales is in 1000$
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Simple Linear Regression
The Problem of Estimation (method of least squares)

▶ What is the interpretation of the the slope co-efficient β̂1 = 5? Here is how we can interpret,

if the student population is increased by 1000, then approximately the sales is predicted to increase by
5000$ units.

▶ or

An additional increase of 1000 student population is associated with approximately 5000$ units of
additional sales.

▶ What is the interpretation of the the intercept co-efficient β̂0? if the student population is 0,
then the predicted sales is 60, 000$. This kind of interpretation for intercept often doesn’t
make any sense unless we come up with a story. So we often avoid interpetating the
intercept co-efficient.

▶ Using the estimated regression line we can also get in-sample predicted values, these are
also sometimes called fitted values.

▶ We can calculate the fitted values using the estimated regression equation,
ŷi = 60 + (5 × xi ).
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Simple Linear Regression
The Problem of Estimation (method of least squares)

Population in 1000s Sales (in 1000$) Fitted Values (in 1000$)
1 2 58 60+ (5 × 2) = 70
2 6 105 60+ (5 × 6) = 90
3 8 88 60+ (5 × 8) = 100
4 8 118 60+ (5 × 8) = 100
5 12 117 60+ (5 × 12) = 120
6 16 137 60+ (5 × 16) = 140
7 20 157 60+ (5 × 20) = 160
8 20 169 60+ (5 × 20) = 160
9 22 149 60+ (5 × 22) = 170

10 26 202 60+ (5 × 26) = 190

▶ in you can get the fitted values with the command fitted(model_result)

▶ These fitted values values are within the sample data points, so this is why we call this
in-sample prediction. But we can also do out-of-sample prediction.
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Simple Linear Regression
The Problem of Estimation (method of least squares)

▶ For example we can also use the estimated regression line to predict the sales when the
population is 30 thousands (notice 30 is not in the sample, nor in the range).

▶ If we do this we get 60 + (5 × 30) = 210 1000$ sales.

▶ So this is a predicted value for which we don’t know yi .

▶ We need to be careful on out of sample prediction, if the fit is good, our estimated function
will always give very good in-sample prediction, but it does not automatically mean for an
unseen data we we will also get good out-of-sample prediction.

▶ There is a way we can evaluate out-of-sample prediction, using training and test sample. We
will see this in our lab session.
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Simple Linear Regression
The Problem of Estimation (method of least squares)

▶ Let’s do another example, recall the advertisement example from page 7.

▶ Suppose we want to use the TV expenditure (in 1000$) variable to predict sales (in 1000
unit). We already have seen the scatter plot, but here is it again
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Simple Linear Regression
The Problem of Estimation (method of least squares)

▶ If we fit the best fitted line with the data, we get following results

code - Regression Results for Advertisement Data - SLM

# load the library, load the data
library(readxl)
advdata <- read_excel("Advertising.xlsx")

# fit the model
slr_result <- lm(sales ~ TV, data = advdata)

# see the results
summary(slr_result)

▶ Following is the output, you should see this in your console. Note that in this case we can
also use directly the read.csv() function. Also use options(scipen = 999) to turn off
scientific printing in .
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Simple Linear Regression
The Problem of Estimation (method of least squares)

Call:
lm(formula = sales ~ TV, data = advdata)

Residuals:
Min 1Q Median 3Q Max
-8.3860 -1.9545 -0.1913 2.0671 7.2124

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.032594 0.457843 15.36 <0.0000000000000002 ***
TV 0.047537 0.002691 17.67 <0.0000000000000002 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 3.259 on 198 degrees of freedom
Multiple R-squared: 0.6119, Adjusted R-squared: 0.6099
F-statistic: 312.1 on 1 and 198 DF, p-value: < 0.00000000000000022
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Simple Linear Regression
The Problem of Estimation (method of least squares)

We can also use the stargazer library to get a little bit organized output (you need to install
the library first)

code: Regression Results for Advertisement Data - SLM

library(stargazer)
stargazer(slm_result, type = "text")

Table 2: Regression Results for Sales and TV Expenditure

Dependent variable:
Sales (in 1000s)

TV Expenditure (in 1000$) 0.048∗∗∗

(0.003)

Constant 7.033∗∗∗

(0.458)

Observations 200
R2 0.612
Residual Std. Error 3.259 (df = 198)
F Statistic 312.145∗∗∗ (df = 1; 198)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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▶ So β̂0 = 7.03 and β̂1 = 0.048.

▶ Let’s interpret β̂1 = 0.048,

if we increase the spending on TV advertisement by 1000$, then approximately the sales is predicted to increase by
48 units.

▶ or

1000$ additional spending on TV advertisement, is associated with approximately 48 units of additional sales.

▶ Note that, this is a prediction type statement (not a causal statement), so we cannot say the sales will
increase by, we can only say the sales is predicted to increase by, or the increased sales is associated with.
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2. Assessing the Fit - R2 and RSE
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Simple Linear Regression
Goodness of Fit or R2

▶ So far we are fitting a line? Question is - how good does the linear line fit with the data?
▶ Actually there is a quantity / summary measure R2, which answers this question for us.

The formula for R2 is

R2 =
SSR
SST

▶ where

SST =
n
∑
i=1

(yi − ȳ) 2, Total Sum of Squares

SSE =
n
∑
i=1

(yi − ŷi )
2 =

n
∑
i=1

e2
i , Error Sum of Squares

SSR =
n
∑
i=1

(ŷi − ȳ) 2, Regression Sum of Squares

▶ Also recall ȳ = 1
n ∑n

i=1 yi . Question is - what does this formula mean? To understand this
first let’s decompose yi − ȳ

yi − ȳ = (yi − ŷi ) + (ŷi − ȳ)
▶ This can be visually understood
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Goodness of Fit or R2

▶ On the left for an ith point, we have yi − ȳ , then on the middle we have a residual or error
(yi − ŷi ) and on the right we have (ŷi − ȳ)
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Goodness of Fit or R2

▶ Now we can take squares and sum on both sides of the decomposition and we get (the
product term becomes 0)

n
∑
i=1

(yi − ȳ) 2

︸ ︷︷ ︸
SST

=
n
∑
i=1

(yi − ŷi )
2

︸ ︷︷ ︸
SSE

+
n
∑
i=1

(ŷi − ȳ) 2

︸ ︷︷ ︸
SSR

▶ We mentioned SST stands for Total Sum of Squares. This is easy to explain. Recall, the total
variability of yi can be explained by the sample variance ∑n

i=1(yi−ȳ)2
n−1 . And for SST we have

the numerator of the sample variance of yi . So SST measures the total variability of yi (but
it’s not exactly variance).

▶ We already know SSE, which is ∑n
i=1 (yi − ŷi ) 2. This is the sum of squared errors, or the

Error Sum of Squares which shows how much variability of error remains after we fitted the
line.

▶ And the term ∑n
i=1 (ŷi − ȳ) 2 is called Regression Sum of Squares or SSR in short, which

shows how much variability of yi is explained by the regression or can be explained by xi .
▶ So this means R2 tells “out of the total variation of y how much we can explain by regression”.
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Goodness of Fit or R2

▶ Also note R2 is a ratio of explained sum of squares and total sum of squares. So this means
we will always have 0 ≤ R2 ≤ 1 (in other words the value of R2 will always lie between 0
and 1).

▶ So high R2 means the least-squares line fits very well with the data. Here is an example of
high R2 with a different data

▶ The black dots are the sample points, the red line is the fitted line. Here R2 is 0.99.
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Simple Linear Regression
Goodness of Fit or R2

▶ Now suppose we have a data which does not show any linear pattern and we try to fit a
linear line, obviously the fit won’t be good, and R2 will be low, for example consider
following data

▶ If we fit a line (which is the red line), then R2 in this case is 0.02, which is almost close to 0.
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Goodness of Fit or R2

▶ So the above discussion shows R2 tells us how well our least-squares line fits the data. High
R2 means the fit is quite good, on the other hand low R2 means fit is not that good with
the data.

▶ R2 is also known as Coefficient of Determination, sometimes it is also called Goodness of Fit.
▶ In the Sales Vs. TV example, we found R2 = .612 (page 43), this means almost 61.2%

variability of y can be explained by the estimated regression line.
▶ There is an important caveat regarding R2, that is high R2 does not automatically mean

that we did a good job with our prediction problem.
▶ There are always issues with out of sample prediction [on board discussion, watch the

recorded class]
▶ But still we can say high R2 is something that is generally desirable.
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Simple Linear Regression
Residual Standard Error

▶ Let’s think about the variance of ϵ again. For now assume homoskedasticity, which means
V(ϵ) = V(ϵ|X = x) = σ2, where σ2 is some constant. So we can think about the
unconditional variance V(ϵ)

▶ In the following we plotted same figure we plotted before.
▶ Recall on the left V(ϵ) is high and on the right V(ϵ) is low

▶ It’s important to understand that high variance of ϵ indicates our lack of certainty in
prediction. Why? Because ϵ is the error that remains after we do prediction using CEF. So
if there is a lot of noise, even if we use CEF, we won’t be able to predict well.
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Residual Standard Error

▶ Now note that ϵ is not observable, so we cannot calculate its variance σ2 or standard
deviation σ, but using the estimated residuals we can get an estimate of the standard deviation
of ϵ.

▶ Here is an estimate, it’s called MSE,

MSE =
SSE
n − 2 =

1
n − 2

n
∑
i=1

(ei − ē)2 =
1

n − 2

n
∑
i=1

e2
i

▶ The last equality holds because we can show that ē = 0 (you can check this with the data!)
▶ Since this is an estimate of the variance of ϵ, we can take square root of this and get an

estimate of the standard deviation of ϵ, which is called Residual Standard Error or Standard
Error of the Estimate.

RSE =
√

MSE =

√
1

n − 2

n
∑
i=1

e2
i =

√
1

n − 2

n
∑
i=1

(yi − ŷi ) 2,

▶ So this gives an estimate of σ. If this is high we may conclude our uncertainty of prediction
is high. If this is low, this is good for our prediction.

▶ So just to clearly mention again, for a fixed sample, MSE is an estimate of σ2 and√
MSE = RSE is an estimate of σ.
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Residual Standard Error

▶ In the case of the advertising data, we see from the linear regression output in page 7 that
the RSE is 3.26. How to interpret this?
▶ One way to interpret this is - sales deviate from the regression line by approximately 3,260 units, on

average.
▶ Another way to think about this is that even if the model were correct and the true values of the

unknown coefficients β0 and β1 were known exactly, any prediction of sales on the basis of TV
advertising would still be off by about 3,260 units on average.

▶ Is this an acceptable error? this depends on the problem context. In the advertising data
set, the mean value of sales is approximately 14,000 units, and so the percentage error is
3, 260/14, 000 = 23, so you might conclude the error is quite large.

▶ So high RSE is considered a lack of fit.
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Simple Linear Regression
Issues with Different Terminologies

Issues with SST, SSR, SSE short forms - BE CAREFUL if you read different books

▶ If you read Anderson, Sweeney, Williams, Camm, Cochran, Fry and Ohlmann (2020) or
Newbold, Carlson and Thorne (2020) you will see the words SST (Total Sum of Squares),
SSR (Regression Sum of Squares) and SSE (Sum of Squared Errors) or (Error Sum of
Squares), we used this.

▶ If you read James, Witten, Hastie and Tibshirani (2023), you will see the words like TSS
(Total Sum of Squares), RSS (Residual Sum of Squares), and ESS (Explained Sum of
Squares)

▶ There
▶ TSS is same as SST ,
▶ ESS (Explained Sum of Squares) is same as SSR
▶ RSS (Residual Sum of Squares) is same as SSE.

▶ So again, one option is to use TSS, RSS and ESS
▶ The other option is to use SST, SSR, SSE.
▶ We will use SST, SSR and SSE like Anderson, Sweeney, Williams, Camm, Cochran, Fry and

Ohlmann (2020), because I think this is more common.
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3. What are the Model Assumptions?
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Simple Linear Regression
Model Assumptions

▶ In Statistics often there will be some assumptions about the unknown world, and the truth
is nothing works if we don’t have any assumption at all. This is because the real life
scenarios are often so complex that it is almost impossible to learn from data without
making any assumption at all. There is famous quote by George Box - “All models are
wrong, but some are useful”.

Figure 3: George Box (1919 - 2013), source - Wikipedia

▶ What Box meant here is, when we assume a model about the real life, it maybe wrong, but
still the model may be useful to learn something about the world.

▶ Sometimes the assumptions are very strong and sometimes we can relax certain
assumptions. In simple linear regression model, often we will often have following 4
assumptions,
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Simple Linear Regression
Model Assumptions

Simple Linear Regression Model - Assumptions

▶ Assumption 1 - We have an iid random sample, {(Y1,X1), (Y2,X2), . . . , (Yn,Xn)}. So all these pairs are
independent and identically distributed.

▶ Assumption 2 - The population regression function or CEF is a linear function in Xi for all i (extensions
possible, we will see later).

E(Yi |Xi = x) = f (x) = β0 + β1x (4)

▶ Assumption 3 - Define ϵi = Yi − (β0 + β1Xi ). Homoskedasticity of ϵ, this means V(ϵi |Xi = x) = σ2 for
all x values, where σ2 is a constant.

▶ Assumption 4* - Conditional on x , ϵi is Normally distributed with mean 0 and variance σ2, so we can
write ϵ|x ∼ N (0, σ2)

▶ The last assumption can be dropped if we have large sample size.
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4. Assessing the Accuracy of the Estimated Coefficients
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Simple Linear Regression
Assessing the Accuracy of the Coefficient Estimates

▶ How do we assess the accuracy of the estimated coefficients?
▶ We already know that in Statistics one way to measure the accuracy of the estimates is

thinking about random samples or repeated sampling.
▶ Repeated sampling idea is very helpful, since we can think about how the values vary if we

perform estimation more than once or multiple times. Here are 4 situations that may
happen if we do repeated sampling and then do estimation multiple times.

▶ In the following suppose we are considering the parameter β1 and β̂1 for different samples.
▶ The true value β1 is at the center, and the black dots are estimates or values of β̂1

calculated from different samples.
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Assessing the Accuracy of the Coefficient Estimates

Figure 4: bias variance situations, true value β1 is at the center,
and the black dots are estimates or values of β̂1

▶ 1. top-left: Here sometimes the estimates are hitting the target, but their accuracy overall is really
bad. You can say on average they are performing well, but there is a lot of variability. This is what
we call low-bias & high-variance situation.

▶ 2. bottom-left: This is better than the last one (in fact this is the best one) here estimates are
always very close to the truth and also the variability is very low. This is what is called low-bias &
low-variance situation. This is ideally what we want.

▶ 3. bottom-right: In this case the variability is not high, but the estimates are more or less always
very off from the target. This is called high-bias & low-variance situation. This is not good, even if
we have low variance.

▶ 4. top-right: This is the worst case, here the estimates are always very off from the target and also
the variability is very high. This is called high-bias & high-variance situation.
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Assessing the Accuracy of the Coefficient Estimates

▶ Recall whenever we think about random sample or repeated sampling automatically the
idea of estimator comes. And an estimator nothing but a random variable (or the formula)
that we think whenever we are thinking about repeated sampling.

▶ Here we have two estimators,

β̂1 =
∑n

i=1 (Xi − X̄ ) (Yi − Ȳ )

∑n
i=1 (Xi − X̄ ) 2 and β̂0 = Ȳ − β̂1X̄ (5)

▶ For a fixed sample when we calculate the values applying this formula we get an estimate
(in the last slides the black dots are different estimates).

▶ The formula is exactly same as (3), but we used uppercase letters to specify that now we
are thinking these quantities as random variables or estimators or sample statistics, where
the values may change if we have a different sample.

▶ So β̂1 is now a random variable. This means for a fixed sample (for example the data set
that we used) it will give us one possible value. But if we change the sample, and use a
different sample, the value will change. Same interpretation can be given for β̂0.
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Assessing the Accuracy of the Coefficient Estimates

▶ Usually the bias variance picture that we saw is used to explain the quality of an estimator.
For example think about β̂1 is an estimator.

▶ When we say an estimator has low bias this means, on average the values or the estimates
will be close to the true value. And When we say an estimator has low variance this means,
the values or the estimates will not vary much.

▶ We already saw the idea of bias and variance, now we can re-write the results using an
estimator. In this case you can think about our parameter is β1 and β̂1 is an estimator. But
this is can be understood with any parameter and an estimator.
▶ 1. top-left: The estimator has low-bias & high-variance.
▶ 2. bottom-left: The estimator has low-bias & low-variance.
▶ 3. bottom-right: The estimator has high-bias & low-variance.
▶ 4. top-right: The estimator has high-bias & high-variance.
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Assessing the Accuracy of the Coefficient Estimates

▶ Definitely we desire an estimator to be unbiased, for example, for example for the parameter
β1 and estimator β̂1 if the following holds we say β̂1 is an unbiased estimator for β1,

E(β̂1) = β1

▶ Similarly if we have E(β̂0) = β0, we say β̂0 is an unbiased estimator for β0.
▶ If we assume we have linear model assumption and the random sample is an iid random

sample it is possible to show that the least square estimators β̂0 and β̂1 are unbiased. Also
we can show that the least square estimators have low variance. We will not go into the
details of the proof of this claim, but you will see the details about these results in the
Econometrics course.

▶ Under homoskedasticity assumption we can show that the variance of the least square
estimators are

V(β̂0) = σ2
[

1
n +

x̄2

∑n
i=1(xi − x̄)2

]
and V(β̂1) =

σ2

∑n
i=1(xi − x̄)2 (6)

▶ The square root of these quantities are the standard errors.

SE(β̂0) =

√
σ2

[
1
n +

x̄2

∑n
i=1(xi − x̄)2

]
and SE(β̂1) =

√
σ2

∑n
i=1(xi − x̄)2

▶ Actually in reality we don’t know σ2, but we can use MSE, which in an estimator for σ2,
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▶ Here an important point is, under homoskedasticity assumption MSE in repeated sampling
is an unbiased estimator for σ2, so E(MSE) = σ2.

▶ Now we can replace σ2 with MSE and we can get an estimate of the standard errors.

ŜE(β̂0) =

√
MSE

[
1
n +

x̄2

∑n
i=1(xi − x̄)2

]
and ŜE(β̂1) =

√
MSE

∑n
i=1(xi − x̄)2

▶ Now using these estimated standard errors we can construct confidence intervals. For
example a 95% confidence interval of β1 would be[

β̂1 − 1.96 · ŜE
(

β̂1
)

, β̂1 + 1.96 · ŜE
(

β̂1
)]

▶ We will usually omit “hat” symbol and write[
β̂1 − 1.96 · SE

(
β̂1

)
, β̂1 + 1.96 · SE

(
β̂1

)]
▶ Here 1.96 is the 97.5 percentile of the normal distribution, we can also use t distribution

under the normality assumption of ϵ.
▶ For the advertising data, the 95% confidence interval for β1 is [0.042, 0.053]
▶ SideNote: Strictly speaking, we need to think about the sampling distribution of β̂1 under

the distributional assumption of ϵ, or large sample assumption. But I am avoiding the
technical details here. You will see that in the Econometrics course.
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5. Significance Testing

68 / 84



Simple Linear Regression
Significance Testing - t test

▶ Standard errors can also be used to perform hypothesis tests on the unknown coefficients.
The most common hypothesis test involves testing the null hypothesis of

H0 : There is no relationship between X and Y versus the alternative hypothesis
Ha : There is some relationship between X and Y

▶ Mathematically, this corresponds to testing (note that it is a two tail test)

H0 : β1 = 0
Ha : β1 ̸= 0

▶ This is because if β1 = 0 then the model reduces to Y = β0 + ϵ, and X is not associated
with Y . We can do the t-test here by calculating the value of the t-statistic, which is

tcalc =
β̂1 − 0

SE
(

β̂1
) ,

▶ Under the Null, this will have a t-distribution with n − 2 degrees of freedom, or with large
sample we can also use Normal distribution.

▶ Then we can do the test using the critical value approach or p-value approach.
▶ For example, for regressing Sales on TV (regression result in page 42), the estimate of the

standard error for β̂ is 0.00269 and the value of the t-statistic is 17.67, and we can see that
p value is almost close to 0.
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Significance Testing - t test

▶ Using this we see that, for this testing we can reject the Null at α = 0.01 or bigger.
▶ If we reject the Null then we say statically there is a significant relationship between the variable

X and Y
▶ You should be able to do the test for yourself, only from the β̂1 and estimate of the

standard error of β̂1, it is possible to calculate the value of the t-statistic.
▶ In the output, 43 it is also possible to read this information using ∗, ∗∗ or ∗ ∗ ∗ (How?)
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Significance Testing - F test

▶ There is another approach of doing significance testing. This approach is known as analysis
of variance (in short ANOVA) approach. In this approach we will F -test.

▶ Following is the ANOVA table for the Sales Vs. TV problem
Df Sum Sq Mean Sq F value Pr(>F)

TV 1 3314.62 3314.62 312.14 0.0000
Residuals 198 2102.53 10.62

▶ You can just run the function anova() in to get this table.
▶ Let’s explain this table,
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Significance Testing - F test

^^I
▶ The first column is the source of variation. In this case we have two sources of variation, one

is the regression, which is written with TV and the other is the residuals (or error).
▶ The second column is the degrees of freedom (Df). In this case we have 1 Df for the

regression and 198 Df for the residuals (We will see why in a minute).
▶ The third column is the sum of squares (SS). Here we have two sum of squares

SSR = 3314.62 and SSE = 2102.53 for the residuals. Note that, in this case we can
automatically calculate SST (how?)
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Significance Testing - F test

▶ The fourth column is the mean sum of squares (MS). The first one is the mean squared
regression

MSR =
SSR

Df of SSR
= 3314.62

and the second one is

MSE =
SSE

Df of SSE
= 10.62

▶ The fifth column is the F statistic. We will use this statistic to do another test of
significance. Here the value of the statistic is

F =
MSR
MSE

▶ The sixth column is the p-value for the F statistic. In this case the p-value is almost close
to 0.
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Significance Testing - F test

▶ Now let’s explain the F -test. First note that, in this case, we are still doing the same test

H0 : β1 = 0
Ha : β1 ̸= 0

▶ And the testing procedure of the F test is same as t-test, when p-value < α we reject the
Null, so in this case we can reject the Null.

▶ Now let’s understand why F test works.
▶ Recall, we know that E(MSE) = σ2 (this was an unbiased estimator)!
▶ Now it is possible to also show that under the Null (I am skipping the detailed calculations)

E(MSR) = σ2

▶ This means if β1 = 0, then

E(MSR) = E(MSE) = σ2

▶ So under the Null, we may expect that the value of MSE will be close the value of MSR
and the value of the F statistic is close to 1.

▶ This means larger values of F means higher chances of rejecting null H0 : β1 = 0.
▶ We can use F distribution to do the test. Note that F distribution is an asymmetric

distribution, and F test is an upper tail test.
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▶ So we will reject the Null if Fcalc > F1−α, where F1−α is the 1 − α percentile of the F
distribution with 1 and n − 2 degrees of freedom.

▶ But it is easy to do the test using p-value, because we already know the p-value.
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Significance Testing - F test

▶ Now let’s explain how did we calculate the Df in SS.
▶ In one line - the degrees of freedom are the number of independent components that are needed to

calculate the respective sum of squares

▶ The total sum of squares, SST = ∑ (yi − ȳ) 2, is the sum of n squared components.
However, since ∑ (yi − ȳ) = 0, only n − 1 components can independently come in the
calculation. The nth component can always be calculated from (yn − ȳ) = −∑n−1

i=1 (yi − ȳ).
Hence, SST has n − 1 degrees of freedom.

▶ SSE = ∑ e2
i is the sum of the n squared residuals. However, there are two restrictions

among the residuals, coming from the two normal equations (you can think we are
estimating two quantities β̂0, β̂1). So it has n − 2 degrees of freedom.

▶ And we will always have,

Df of SST = Df of SSE + Df of SSR
▶ So for SSR the Df will be

Df of SSR = (n − 1)− (n − 2) = 1

76 / 84



Simple Linear Regression Model (SLR)

5. Prediction: Confidence Intervals and Prediction Intervals
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Confidence Intervals for f (x∗) at a new point x∗

▶ Recall using the estimated line ŷi = β̂0 + β̂1xi , we can easily get a point estimate of f (x∗) for
any new point x∗ by f̂ (x∗) = β̂0 + β̂1x∗

▶ For example, recall for the advertisement data where our estimated regression function was
ŷi = β̂0 + β̂1xi = 7.03 + 0.048xi . Now suppose x∗ = 100. This means we want to predict
the sales for a TV advertising budget of $100, 000. We can see the predicted sales would be
11.786 × 1000 = 11, 786 units. This is because 7.03 + (0.048 × 100) = 11.786

▶ Now how good is our prediction for the CEF at this new point.
▶ To answer the first question we can construct confidence intervals of mean at x∗, or

confidence intervals around f (x∗) = E(Y |X = x∗) = β0 + β1x∗

▶ We will skip the derivation (see Abraham and Ledolter (2006) page 36 for a derivation if
you are interested) but a 100(1 − α) percent confidence interval for f (x∗) at a new point
x∗ is given by

f̂ (x∗)± t1−α/2, n−2 ×

√
σ2

[
1
n +

(x∗ − x̄) 2

∑n
i=1 (xi − x̄) 2

]
▶ where

SE
(
f̂ (x∗)

)
=

√
σ2

[
1
n +

(x∗ − x̄) 2

∑n
i=1 (xi − x̄) 2

]
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Confidence Intervals for f (x∗) at a new point x∗

▶ So if these confidence intervals are narrow, that means f̂ (x∗) will be to close to f (x∗) in
repeated sampling, and we have more precision in the estimation of f (x∗)

▶ If these intervals are wider, this means there is a lot of uncertainty about the prediction.
▶ This confidence interval is what we call confidence interval for the mean at a new point x∗.
▶ You don’t have to memorize the formula, it is very easy to construct this interval in .
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Prediction intervals for Y at x∗

▶ There is another kind of uncertainty that we can consider, that is how good can we predict the
unknown response Y ∗ at a new point x∗?

▶ We can use prediction intervals to answer this question.
▶ Prediction intervals are intervals of the random Y ∗ at a new point x∗ (recall at x∗ there are

many possible values of Y ∗)
▶ 100(1 − α) percent prediction interval for Y ∗ at a new point x∗ is given by

f̂ (x∗)± t1− α
2 ,n−2 ×

√
σ2

[
1 +

1
n +

(x∗ − x̄) 2

∑n
i=1 (xi − x̄) 2

]
▶ The uncertainty in this case will be definitely higher. This is because even if we knew f (x)

that is, even if we knew the true values for β0 and β1, the response value cannot be
predicted perfectly because of the random error ϵ in the model.

▶ Prediction intervals are always wider than confidence intervals, because they incorporate
both the error in the estimate for f (X ) (the reducible error) and the uncertainty as to how
much an individual point will differ from the population regression plane (the irreducible
error).

80 / 84



1. Statistical Learning and the Problem of Regression
Best Function to Predict
Estimation of f Parametric vs. Nonparametric

2. Simple Linear Regression Model (SLR)
1. The Problem of Estimation
2. Assessing the Fit - R2 and RSE
3. What are the Model Assumptions?
4. Assessing the Accuracy of the Estimated Coefficients
5. Significance Testing
5. Prediction: Confidence Intervals and Prediction Intervals

3. Appendix



Appendix

82 / 84



Some Technical Details

▶ Just using the definition of conditional variance, we can also show that

V (ϵ | X = x) = E
(
ϵ2 | X = x

)
= E

[
(Y − E(Y | X = x)) 2 | X = x

]
ϵ = Y − f (X )

E(ϵ|X = x) = E(Y − f (X )|X = x) [take cond. expec. on both sides]
= E(Y |X = x)− E(f (X )|X = x) [expectation of sums = sum of expectations]
= f (x)− f (x) [conditioning means fixing so f (X = x) = f (x)]
= 0
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