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Statistical Inference - from Sample to Population
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Population Data Vs. Sample Data

▶ Let’s recap ECO104, do you know the difference between the Population and a Sample?
▶ Suppose we collected a data from 5 students studying currently at EWU (hypothetical

data). You know that the columns are called variables and the rows are called observations
or units.

Gender Monthly Income (tk) ECO-101 Grade # Retakes
Student A Male 3615 B- 3
Student B Female 49755 A 2
Student C Male 44758 A 1
Student D Female 3879 B 0
Student E Male 22579 A+ 2

▶ What is the Population of this study?
▶ What is the Population Proportion of Male Students? (Or Female Students?)
▶ What is the Population Mean of Income?
▶ We need to talk about what do we mean by the word “Population”and “Sample” in

Statistics?
▶ What is the “Sample Proportion of Male”/ “Sample Mean of Income” ?
▶ What’s the difference?
▶ Last question - what is the sample size?
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Population Data Vs. Sample Data

Definition 1.1: (Population and Sample)

The collection / set of all observations in a particular study is called the population. A sample is
a subset of the population.

▶ Why Population matters?
▶ One answer could be

“Maybe we are interested to get some idea about all of the students studying currently at EWU.”

▶ In this case, we say the population is the set of all current students at EWU. And the set of
5 students is a sample of that population.

▶ Usually collecting population data is very time consuming and often impossible, here is an
example, think about when the population is the set of all EWU students from the
beginning of EWU.

▶ So we collect a sample of the population.
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Population Data Vs. Sample Data
▶ Note that a sample is supposed to be a good representative of the whole population.
▶ If the sample is not a good representative, then we say we have a biased sample.
▶ Biased sample is bad, why?... because any conclusion from a biased sample might lead to

incorrect conclusion regarding the population (can you think about an example?)
▶ One way to get a good sample is - Simple Random Sampling! (details on board)
▶ What if the population is infinite ??? Is it even possible in reality ???
▶ One of the major tasks of statistical analysis is, using a sample to make some conclusions

regarding the population, this process is called Statistical Inference, or we call this -
Inferential Statistics.

▶ This is different than descriptive statistics, recall in descriptive statistics we have NO goal
of making inference regarding population, we just describe the data, that’s it!

▶ There were two types of descriptive statistics,
▶ Graphical Methods (Bar Chart, Pie Chart, Histogram, Scatter Plot)
▶ Numerical Methods (Sample Mean, Median, Mode, Variance, Percentile (or quantile), sample

covariance, correlation etc)
▶ When we graph or calculate these things there is no goal of making inference! we just

describe the data
▶ Here we will use the same techniques, but our goal is one step more - that is making

inference about the population.
▶ For example, we can calculate the sample mean and make inference for the population

mean.
▶ Does our estimation improve if we have larger sample size? yes... why? any law ???
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Point Estimator and Sampling Distribution
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Point Estimator and Sampling Distribution

Point Estimation
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Point Estimation

▶ We already saw one example of a point estimation. For example, it could be that we are
interested in Population Mean, so this is our target, and we are guessing this target with
sample mean!

▶ This process in general is known as Point Estimation, it’s a concept in Inferential Statistics,
where you just give one number as a guess!

▶ But there are other methods too!
▶ In fact there are two major themes of statistical inference

▶ 1. Estimation - Point Estimation and Interval Estimation (a.k.a confidence interval)
▶ 2. Testing (a.k.a Hypothesis Testing).

▶ Let’s see a rough example on board about estimation and testing (more details will come in
the coming chapters!)

▶ In this chapter we will focus on estimation, both point and interval, but we will discuss
point estimation.
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Point Estimation

▶ We will write the point estimation idea with notation (please don’t be scared!)
▶ Suppose we are interested in the Population mean µ

▶ But we cannot access it and we only have a sample x1, x2, . . . , xn (These are fixed numbers
for a sample of size n)

▶ So we find the sample mean x̄ = 1
n ∑n

i=1 xi

▶ This sample mean x̄ is a point estimate of the unknown Population mean µ.
▶ This process is what we call point estimation.
▶ Question - Does the estimate changes with different sample? How do we write this? We

need to think about random variables....
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Point Estimator and Sampling Distribution

Sampling Distribution
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Point Estimator and Sampling Distribution

▶ Supose we have an income data of 10 units / observations,
Income Random variable

1. 20 X1 =?
2. 60 X2 =?
3. 20 X3 =?
4. -20 X4 =?
5. -30 X5 =?
6. -10 X6 =?
7. 80 X7 =?
8. 10 X8 =?
9. 30 X9 =?
10. 40 X10 =?

Table: Income data

▶ We can think about a data of a single unit in two ways
▶ A realized data, where the randomness is gone and we have observed the value, for example x1
▶ Or a random variable for example, X1

▶ In this way for the whole data set, we can think as 10 fixed number x1, x2, . . . , x10 (this is
when the sample is fixed and there is no randomness) or X1,X2,X3, . . . ,X10, which are 10
random variables.
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Point Estimator and Sampling Distribution

▶ Generally when we think about n random variables, X1,X2,X3, . . . ,Xn, we will call it a
random sample (the other one is the fixed sample!)

▶ The idea of Estimator comes when we think about a random sample.
▶ An Estimator is a function of a random sample, so this is random and hence this is a

random variable.
▶ Since an Estimator is a random variable, it changes from sample to sample, but when we

calculate it for a fixed sample, then we get x̄ . Here x̄ is a constant and it’s not random.
▶ Here is the Estimator, which is a random variable!

X̄n =
1
n

n
∑
i=1

Xi , an estimator

▶ Since X̄n is a random variable, question is what is the probability distribution of X̄n? or
Expectation of E(X̄n). Do you know what is Expectation? or Variance.

▶ Let’s recap some of the ideas from ECO104 .....
▶ Recall Expectation of a random variable X , written with E(X ) (which is like average) but

its a weighted average, what is the formula?
▶ What is the variance of a random variable, written with V(X )?
▶ We are interested in 3 important questions,

1. What is the Expectation of the random variable X̄n, written as E(X̄n)?
2. What is the variance of the random variable X̄n, written V(X̄n)?
3. What is the probability distribution of X̄n (this is what we call sampling distribution!)
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Point Estimator and Sampling Distribution

▶ The answer to the third question is what we call Sampling Distribution of Means.
▶ Note that, this is the distibution of sample means x̄ , that we get from repeated sampling!
▶ This is possibly the most imporant object for now, ...
▶ Definitely if we know the answer of 3, we know the answers of 1 and 2.
▶ We will now three important results ....,
▶ Important remarks regarding some notations:

▶ If we write E(X ), this means X is a random variable and E(X ) is the Expected Value of X , or we say
Expectation of X . Recall, the idea of Expectation is very similar to average, but it is a population
average.

▶ Similarly if we write V(X ), this means the variance of X , again this is the population variance
▶ Both Expectation and Variance depends on the population probability distribution.

Theorem 1.2: (Mean and Variance of X̄n with only i.i.d assumption)

If we have i.i.d random variables X1,X2, . . . ,Xn with the same mean µ and same variance σ2,
then

i) E (X̄n) = µ (1)

ii) V (X̄n) =
σ2

n (2)
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Point Estimator and Sampling Distribution

Theorem 1.3: (Distribution of X̄n with normality and i.i.d assumption)

If we have i.i.d random variables X1,X2, . . . ,Xn where they all are distributed with N (µ, σ2),
then

i) E (X̄n) = µ

ii) V (X̄n) =
σ2

n

iii) X̄n ∼ N (µ,
σ2

n )

iv) Zn ∼ N (0, 1) where Zn =
X̄n − µ

σ
√

n

(3)

v) Tn ∼ tn−1 where Tn =
X̄n − µ

S
√

n

and S2 =
1

n − 1

n
∑
i=1

(Xi − X̄n)
2 (4)
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Point Estimator and Sampling Distribution

Theorem 1.4: (Central Limit Theorem (CLT) and related results)

Let X1,X2, . . . ,Xn be i.i.d random variables with population mean µ and variance σ2. Then for
large n (technically we need n → ∞), we get following results:

i) Zn
approx∼ N (0, 1) where Zn =

X̄n − µ

σ
√

n

[CLT] (5)

ii) X̄n
approx∼ N

(
µ,

σ2

n

)
iii) Tn

approx∼ N (0, 1) where Tn =
X̄n − µ

S
√

n
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Statistic, Point Estimator and Sampling Distribution - Important
Remarks

▶ So we understood that the idea of the sampling distribution is a repeated sampling idea. In real
life you can only have one sample, so you can never calculate this using a sample data.

▶ And the last three results tell us that, we can only know the sampling distribution of means
under certain assumptions (in particular we need either normality or large sample size)

▶ If we assume normality (this means our data is normally distributed), then the distribution
of the sample means is also normal and this result is for any sample size! This is called the
exact distribution!

▶ If we don’t assume normality for the population, then usually we have no hope, except for
large n.

▶ The standard deviation of sampling distribution is called standard error! This is standard
deviation, but this name is special for sampling distribution.

▶ In general any function of the random sample is called a “Statistic”, so an estimator is also a
Statistic. The difference is Estimator is a type of Statistic where we are estimating some
target! A statistic might not have any goal, it’s just a function of random variables
X1,X2,X3, . . . ,Xn! The distribution of statistic is called sampling distribution.

▶ For example, X̄n, Zn are both examples statistics but X̄n is an estimator for µ, Zn is just a
statistic.

▶ Another example is S2, where S2 = 1
n−1 ∑n

i=1 (Xi − X̄n) 2. This is a statistic since it’s a
function of the random sample. And this is also an estimator for σ2, because it is targeting
population variance σ2. Note that S2 is just a sample variance.
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Point Estimator and Sampling Distribution

Properties of Point Estimator
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Properties of Point Estimators

▶ Why did we take the average to estimate µ? Why not median, or maximum? These all are
examples of estimators for µ, so why sample mean X̄n?

▶ The answer is, the sample average is a “good” estimator for the population mean µ

▶ What do we mean by “good”?
▶ One answer is - it is an “unbiased” and a “consistent estimator”?
▶ What does “unbiasedness” mean? In notation this means

E(X̄n) = µ

▶ The interpretation is, if we calculate, sample means many times, on average we are not
doing a bad job, even if our sample size n is not that big.

▶ Draw the dart picture.... on board
▶ Notice this result does not depend on the sample sizes, so we say unbiasedness is a finite

sample property of an estimator.
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Properties of Point Estimators

▶ Now let’s focus on consistency, we say an estimator is a consistent estimator then, if we
have n → ∞ then there is a very high probability that X̄n will approach to µ. So we can say

if n → ∞ then X̄n → µ happens with very high probability
▶ So this says, even if for small sample our sample mean is doing a bad job, as we increase

the sample size we will eventually go very close to µ.
▶ If you contrast consistency to unbiasedness, you will notice that this is a limiting property

or we say asymptotic property (because we are saying n → ∞, recall limit...), as opposed to
finite sample property!

▶ The estimator sample mean Xn is both an unbiased and a consistent estimator for the
population mean µ.

21 / 50



Properties of Point Estimators

▶ So we talked about unbiasedness and consistency of an estimator, there is another thing
called variance of an estimator, for sample mean this is V(X̄n) =

σ2
n (In Anderson you will

see the notation σ2
x̄ to represent the same object, but I will not use this notation).

▶ You will not see too much discussion of the variance of an estimator here, but in higher
courses this theme will come a lot!

▶ Looking at the variance of estimators is useful if we want to compare two or more estimators.
▶ It is possible that two estimators are unbiased, one has very high variance.
▶ This means on average both are doing fine, but one has very high uncertainty!
▶ Again the dart picture!
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Point Estimator and Sampling Distribution

How to get Point Estimators
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How to get Estimators

▶ There are many techniques to get estimators. For example, here are some common
techniques,
▶ Method of Least Squares
▶ Method of Maximum Likelihood
▶ Method of Moments

▶ Sadly in this course we will not cover systematically any of these technique, but in higher
courses you will see all of these methods.

▶ But we will talk about method of least squares when we talk about regression, and already we
have seen some examples of method of moment techniques, ... roughly you can think the
word “moment” is same as “expectation”...

▶ In the method of moment idea, we can get estimators by replacing population expectation
with averages.

E(X ) = µ, if this is our target object

X̄n =
1
n

n
∑
i=1

Xi , replace the expectation, then we have an estimator

▶ Can you think about an estimator of σ2, recall σ2 is actually the population variance of X ,
so Var(X ) = σ2, and for variance we have the following formula

σ2 = Var(X ) = E
[
(X − E (X )) 2]

24 / 50



How to get Estimators

▶ This should be sample variance S2, where

S2 =
1

n − 1

n
∑
i=1

(Xi − X̄n)
2

▶ Again note that, we replaced Expectation with averages.
▶ S2 is an unbiased estimator of σ2.
▶ What if we divide by n rather than n − 1? this is also an estimator of σ2, but unfortunately

this is a biased estimator!
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Interval Estimation of Population Mean µ
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Interval Estimation of Population Mean µ

Basic idea of Interval Estimation
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Interval Estimators

▶ Before we proceed, recall X̄n is the point estimator of the population mean µ, and for a fixed
sample x̄ is what we call an estimate of the unknown parameter µ.

▶ Point estimator is nice, but it is rather crude! we are just giving one number as a guess.
▶ Now we will discuss another type of estimation, known as Interval estimation. Here also we

will have Interval estimators (which is a random interval) and an Interval estimate for a fixed
sample.

▶ Interval estimators is a little bit flexible, because it gives a range of possible values of the
parameter (not just one value)!

▶ In particular, given α, where 0 < α < 1, we say a 100(1 − α)% interval estimator for µ is a
random interval [L,U ] such that

P(L ≤ µ ≤ U) = 1 − α (6)

▶ For example, if we want to construct a 95% interval estimator, then 1 − α = .95, and we
want to find L, and U such that, there is a 95% possibility that the true parameter will fall
in this interval. So this means,

P(L ≤ µ ≤ U) = .95 (7)
▶ Recall the the frequency interpretation of probability.
▶ Using the frequency interpretation means, if we construct the interval [L.U ] around 100

times, roughly 95 times the true µ fall in this interval.
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Interval Estimators

▶ We can only think about probability for a random object, so where is this probability
coming from?

▶ First of all note that, µ here is not random (in classical statistics the parameter is never a
random object, it is always fixed!), so what is random inside the probability?

▶ Actually, we will see that the L and U are random in repeated sampling.
▶ In fact, the random L and U depends on the random sample X1,X2,X3, . . . ,Xn, so we

should write, L(X1,X2, . . . ,Xn) and U(X1,X2, . . . ,Xn). But just to make our life easier, we
will use L and U. You should understand that these are functions of the random sample.

▶ We will see that we will construct interval estimator of the type,

P(L ≤ µ ≤ U) = 1 − α

▶ The interpretation is,

“In a repeated sampling, 95 out 100 times the interval constructed using [L,U ] will contain
the true parameter µ”
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Interval Estimators

▶ “Ideally” the interval [L,U ] should have two properties:
▶ P(L ≤ µ ≤ U) should be high, that is, the true parameter µ ∈ [L,U ] will happen with high

probability.
▶ The length of the interval [L,U ] should be relatively narrow on average.

▶ How do we find a interval estimator? There are different methods, but definitely we need to
use a statistic and the distribution of the statistic (i.e., the sampling distribution)
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Interval Estimation of Population Mean µ

Interval Estimation - First Example σ known case
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Interval Estimate / Confidence Interval
σ known

Let’s do an example first where we will calculate interval estimate for a fixed sample.

Example 1.5: (Interval Estimator and Interval Estimate/Confidence Interval)
Suppose we have x̄ = 82, population standard deviation σ = 20, sample size n = 100, and we
are asked to compute the 95% confidence interval or interval estimate of the population mean
µ, then since z1−α/2 = z0.975 = 1.96 (this is 1 − α/2 quantile of the standard normal distribution
and you can calculate this using R function qnorm(.975)), the interval estimator is

[X̄n − 1.96 20√
100

, X̄n + 1.96 20√
100

] (8)

The interval estimate or confidence interval is

[82 − 1.96 20√
100

, 82 + 1.96 20√
100

]

= [82 − 3.92, 82 + 3.92]
= [78, 85.92] (9)

Now note, the first one at (8) is a random interval since X̄n is random but the second one (9) is
a deterministic interval (there is no randomness here!), this is the interval estimate, Anderson
et al. (2020) called this confidence interval.

So in the second one either our population mean µ is there or it is not there. If you say that
there is a 95% probability that true parameter µ will fall inside [78, 85.92], this is a wrong
interpretation. We can say “for this particular sample, the interval estimate is [78, 85.92]”.
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Interval Estimate / Confidence Interval
σ known

▶ So what is the correct interpretation? - You should say - if we construct these kinds of intervals
100 times, then roughly 95 times our true parameter will fall inside.

▶ So now we have a probabilistic interpretation.
▶ A Side Note: Note that when we constructed the interval estimate, we added and subtracted

the following same number with x̄
σ√
n
× z1−α/2

Here σ/
√

n is the standard error and the whole term is called the margin of error of the
point estimate.

▶ The idea is x̄ is our point estimate, but of course there might be some error, so we say that
with 1 − α confidence roughly the error is σ√

n × z1−α/2

▶ Let’s see how we can do the whole calculation of Example 1.5 in
▶ First note, we have following information

▶ n = 100
▶ x̄ = 82
▶ α = 0.05 (this is because we are asked to construct 90% confidence interval)
▶ σ = 20
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Interval Estimate / Confidence Interval
σ known

code - sigma known (confidence interval)

# First create some objects with the information given
n <- 100
xbar <- 82
alpha <- 0.05
sigma <- 20

# calculate sderror and moe and save them as objects
sderror <- sigma/sqrt(n)
moe <- qnorm(1 - alpha/2) * sderror

# upper limit
xbar + moe
# [1] 85.91993

# lower limit
xbar - moe
# [1] 78.08007

▶ So the interval estimate or the confidence interval in this case is (78.08 , 85.91)
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Interval Estimation of Population Mean µ

Deriving Interval Estimator - σ known case
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Deriving Interval Estimators
σ known

▶ Now how did we get that interval?
▶ Suppose we already know that our population data is normally distributed,
▶ This means all the random variables X1,X2, . . . ,Xn are also normally distributed with the

distribution N (µ, σ2). Additionally assume they are independent.
▶ This means we have [applying Theorem 1.3 (iii)]

X̄n ∼ N (µ, σ2/n)
▶ But this also means [applying Theorem 1.3 (iv)] (this is just doing standardization)

Zn =
X̄n − µ

σ√
n

∼ N (0, 1)

▶ Recall X̄n is a statistic and an estimator of µ. In this case Zn is also a statistic, the benefit
of transforming X̄n to Zn is we can now use standard normal. Why did we do this? We will
see that here Zn also plays an important role to find the interval estimator for µ.

▶ Now, let’s derive the interval estimator for µ. You can skip the derivation for exam but I
recommend you to do it at least once in your lifetime, actually this is not difficult at all.
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Deriving Interval Estimators
σ known

We will construct two-sided interval (it is also possible to construct one sided interval, I will
write something in the Appendix, but you can skip it for exam!).

To gte the two sided interval, first fix α, let’s say α = 5% then 1 − α is what we call confidence
coefficient / confidence level / nominal coverage. Now since Zn ∼ N (0, 1), we can write

P (zα/2 ≤ Zn ≤ z1−α/2) = 1 − α (10)
Visually this means,

Here zα/2 is a value such that P(Zn < zα/2) = α/2 and z1−α/2 is a value such that
P(Zn < z1−α/2) = 1 − α/2. It is important to mention that because of the symmetry of the
Normal distribution always we will have zα/2 = −z1−α/2 (note the two tail probabilities are
equal, and it is α/2).
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Deriving Interval Estimators
σ known

Now we will do some algebra with the term inside the probability in (10), recall we had
zα/2 ≤ Zn ≤ z1−α/2,

zα/2 ≤ Zn ≤ z1−α/2 = −z1−α/2 ≤ Zn ≤ z1−α/2 [using symmetry of the normal]

= −z1−α/2 ≤ X̄n − µ

σ
√

n

≤ z1−α/2

= −
σ
√

n
z1−α/2 ≤ X̄n − µ ≤

σ
√

n
z1−α/2 [multiplying all sides by σ/

√
n ]

=
σ
√

n
z1−α/2 ≥ −X̄n + µ ≥ −

σ
√

n
z1−α/2 [multiplying all sides by −1 ]

= −
σ
√

n
z1−α/2 ≤ −X̄n + µ ≤

σ
√

n
z1−α/2 [rewriting the inequalities]

= X̄n −
σ
√

n
z1−α/2 ≤ µ ≤ X̄n +

σ
√

n
z1−α/2 [adding X̄n to all sides]
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Deriving Interval Estimators
σ known

So this means, writing

P (zα/2 ≤ Zn ≤ z1−α/2) = 1 − α

is same as

P

(
X̄n −

σ
√

n
z1−α/2 ≤ µ ≤ X̄n +

σ
√

n
z1−α/2

)
= 1 − α

So we have found our upper and lower confidence limits, these are

L = X̄n −
σ
√

n
z1−α/2 and U = X̄n +

σ
√

n
z1−α/2

So the interval estimator is
[X̄n −

σ
√

n
z1−α/2 , X̄n +

σ
√

n
z1−α/2]

Now if we calculate this for a fixed sample we will call it an interval estimate which will be

[x̄ −
σ
√

n
z1−α/2 , x̄ +

σ
√

n
z1−α/2]

For an interval estimate, there is no probabilistic interpretation.

But for the interval estimator, can think about the frequency interpretation of probability, that
is, if we do repeated sampling 100 times, then 95 out 100 times the intervals that we constructed will
contain the true parameter µ
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Interval Estimation of Population Mean µ

Interval Estimator - σ unknown case
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Interval Estimators
σ unknown

▶ Can we construct intervals when we do not know the population standard deviation σ. The
answer is YES!

▶ We need to use the statistic Tn from the Theorem 1.3 (v). This is called t-statistic, on the
other hand when we used Zn, that is called z-statistic.

▶ Note that in this case the statistic Tn follows a new sampling distribution, it is called
t-distribution, with parameter n − 1 (where n is the sample size!), there is a special name of this
parameter, it is called degrees of freedom.

▶ The idea is if we use the sample standard deviation S, which is possible to calculate using
the sample. Then we get a new Statistic Tn, which is distributed with t-distribution with
n − 1 degrees of freedom (Again to emphasize, degrees of freedom (df) is a parameter for
the t-distribution).
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Interval Estimators
σ unknown

▶ Tn or the t-statistic is written as,

Tn =
X̄n − µ

S
√

n

(11)

▶ And according to the Theorem 1.3 (v), we have

Tn ∼ t(n−1)

▶ This means Tn is distributed with t distribution with parameter (n − 1), or degrees of
freedom (n − 1).

▶ Note that in (11) S is the sample standard deviation, Recall S2 is

S2 =
1

n − 1

n
∑
i=1

(Xi − X̄n)
2 and S =

√
S
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Interval Estimators
σ unknown

▶ Now how do we get an interval estimator in this case? The steps are actually same as page
28, except now you need to use quantile from t distribution with parameter n − 1.

▶ If you do, then you should get the following interval estimator using tn−1 distribution,[
X̄n −

s√
n

t1−α/2 , X̄n +
s√
n

t1−α/2

]
▶ The interval estimate in this case is,[

x̄ − s√
n

t1−α/2 , x̄ +
s√
n

t1−α/2

]
(12)
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Interval Estimators
σ unknown

▶ Let’s see a concrete example.
▶ Suppose in Example 1.5, we don’t know σ, rather we know sample standard deviation

s = 18.5.
▶ This means everything is same except the information of σ is not known to us,

▶ n = 100
▶ x̄ = 82
▶ α = 0.05 (this is because we are asked to construct 90% confidence interval)
▶ s = 18.5

▶ Now we will do the calculation in
▶ You will see following important differences compared to σ known case.

▶ As mentioend we need to use tn−1 distribution
▶ We need to use s, which is the sample standard deviation
▶ Because we don’t know σ, we cannot calculate the standard error σ/

√
n, however we can calculate

the estimate of the standard error, which is s√
n
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Interval Estimators
σ unknown

code - sigma unknown (confidence interval)

# First create some objects with the information given
n <- 100
xbar <- 82
alpha <- 0.05
s <- 18.5

# calculate the estimate of the sderror and moe and save them as objects
sderror_est <- s/sqrt(n)
moe <- qt(1 - alpha/2, n-1) * sderror_est

# upper limit
xbar + moe
# [1] 85.6708

# lower limit
xbar - moe
# [1] 78.3292

▶ So the 95% interval estimate or the confidence interval in this case is (78.33 , 85.67)
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Interval Estimation of Population Mean µ

Interval Estimator - σ unknown case with large samples
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Large Sample results for t statistic

▶ There is one last important result before we go to the next section.
▶ Recall, from the last section we learned that, when we use S, rather than σ, we get a new

statistic, that is what we called t statistic,

Tn =
X̄n − µ

S
√

n
▶ And we already learned that this statistic is distributed with t distribution.
▶ Now there is a very interesting result. Have a look at the result in Theorem 1.4 (iii), this

says if we have a very large sample, then

Tn
approx∼ N (0, 1)

▶ This means for very large n, the t statistic is approximately normally distributed!
▶ This means, if the sample size n is large then, we can forget about anything called t

distribution, and just use the normal distribution with t statistic.
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Large Sample results for t statistic

▶ What’s the implication of this result for our confidence interval construction?
▶ The answer is, for large sample size we can construct the confidence interval in the

following way, [
x̄ − s√

n
z1−α/2 , x̄ +

s√
n

z1−α/2

]
(13)

▶ Now if you compare (12) and (13), you will understand the difference.
▶ What’s the difference?
▶ Again why does this happen?
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