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▶ In this chapter we will see what happens when we do sampling. The important thing to
always remember is that our sample itself is a random object. So anything that we can
calculate from the sample is also random. Random objects that we calculate from the
sample is generally called Sample Statistic (it’s a function of the random sample). For
example, sample mean, sample proportion are all examples of sample statistics.

▶ When a sample Statistic targets a population parameter we call it an Estimator. It’s
important that in real life we will never know the true population parameter. But we can
use a sample an an estimator to estimate the population parameter.

▶ In repeated sampling, the probability distribution of a sample statistic or the probability
distribution of an estimator is called Sampling Distribution.

▶ The idea of Sampling Distribution is very important and almost like THE fundamental
topic Statistics. It helps us to asses the variability of the sample statistic.

▶ So let’s start... .
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Sample, Population and Statistical Inference

1. Sample and Random Sample
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Sampling
finite and infinite population

▶ Consider following data (we saw this before), recall this was collected randomly from 5
students studying currently at EWU (hypothetical data). You know that the columns are
called variables and the rows are called observations or units.

Gender Monthly Income (tk) ECO-101 Grade # Retakes
Student 1. Male 3615 B- 3
Student 2. Female 49755 A 2
Student 3. Male 44758 A 1
Student 4. Female 3879 B 0
Student 5. Male 22579 A+ 2

▶ This is a sample right? Ques -
What is the population of this study? Ans - Everyone currently studying at EWU.

▶ Probability Theory was about modeling the population, recall we talked about population
mean, population variance.

▶ Now we will start Statistics and Statistics starts from Sample or more appropriately Random
Sample.
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Sampling
finite and infinite population

▶ What is a random sample?
▶ Is this particular sample random? Ans - NO, because we know all values.
▶ Can we think about a sample which is random? Ans - YES,
▶ How? Think about repeated sampling (or taking samples again and again and then the sample values

will be random right?).

▶ When we are thinking about repeated sampling, we can think the sample is actually a
random object, since every-time we take a new sample, we will get different values.

▶ And that random object is what we will call a “a random sample”.
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Sampling
finite and infinite population

▶ When we think about a random sample, you should think about following sample

Gender Monthly Income (tk) ECO-101 Grade # Retakes
Student 1. ? ? ? ?
Student 2. ? ? ? ?
Student 3. ? ? ? ?
Student 4. ? ? ? ?
Student 5. ? ? ? ?

▶ The question mark indicates the values are random.
▶ In probability theory when we are thinking about population distribution, we are thinking

each of these variables, Gender, Monthly Income (tk), ECO-101 Grade and # Retakes
follow a particular distribution.

▶ For example, we may think maybe the population distribution of Income is Normal with
some mean µ and variance σ2 (more on this later!)
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Sampling
finite and infinite population

▶ Recall our sample is supposed to be a good representative of the whole population. If the
sample is not a good, then we say we have a biased sample. Biased sample is always bad,
why?... because any conclusion from a biased sample (for example estimation ... we will
talk about estimation in a minute) might lead to incorrect conclusion regarding the
population.

▶ One way to get a good sample is - Simple Random Sampling! Here is the definition from
Anderson et al. (2020)

Definition 5.1: (Simple Random Sampling)

A simple random sample of size n from a finite population of size N is a sample selected such
that each possible sample of size n has the same probability of being selected.
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Sampling
finite and infinite population

▶ How to perform simple random sampling from finite population? Ans - Think about this
process, we put the whole population in a jar, then we randomly pick one observation, after
that we keep this observation back to the jar and take another another observation.... and
we continue like this until we get the sample size we want.

▶ What if the population is infinite? Then the only thing we need is independent sampling!
Even if we take one sample, we don’t have to put it back in the jar, because it doesn’t
matter!
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Sampling
finite and infinite population

▶ Let’s see an example of sampling from a finite and infinite population in Excel.
▶ For finite population we will follow the example given in Anderson et al. (2020), with

dataset EAI to do the sampling in Excel.
▶ For an infinite population we can think about sampling from a normal distribution (any

continuous distribution will work), for example we can think about N (10, 4), so here
population mean µ = 10 and population variance σ2 = 4.

▶ Now an important point, using computer in theory we can do sampling from infinite
population. But this is not the case in reality, rather in realty we just have a sample to start with,
and we will assume that this sample is coming from a population which follows certain distribution
with certain parameter, maybe we can assume only the distribution but we never know the
parameter!.

▶ For example we may assume our population income is Mormally distributed with mean µ
and variance σ2, and µ and σ2 are unknown to us. So we will use the sample to estimate µ
and σ2 (we will talk this in the next section).
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Sampling
finite and infinite population

Figure 1: For example, this is a sample of 100 points randomly picked from N (10, 22) using a
spreadsheet software like Excel.
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Sample, Population and Statistical Inference

2. Statistical Estimation
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Estimation

▶ Consider the sample again,

Gender Monthly Income (tk) ECO-101 Grade # Retakes
Student A Male 3615 B- 3
Student B Female 49755 A 2
Student C Male 44758 A 1
Student D Female 3879 B 0
Student E Male 22579 A+ 2

▶ Now again, think about following questions,
▶ do we know the population mean of income from all students, call it µ?

Ans - NO, we don’t know µ, (Here µ is just some number which is the population average)

▶ Similarly do we know the population proportion of all female students, call it p?

Ans - NO (here p is probability)

▶ Now can we estimate µ or p? Ans: Yes - we can use our sample to estimate.
▶ For example, sample mean of income, denote this with x̄ can be used to estimate µ. For

example here x̄ = 124586 (Just simply take the average). This is the estimate of the
population mean µ.

▶ Similarly sample proportion of female students, call it p̄ can be used to estimate population
proportion p. Here if we think Female = 1, and Male = 0, and then sample proportion is
p̄ = 0.4 (Just simply take the average). This is the estimate of the population proportion p.
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Estimation

▶ This is the idea of Estimation, that is

there is a target parameter for example µ or p, which is a population object, but we don’t
know it, then we will estimate these objects with some numbers using a sample.

▶ The number that we calculate using a sample is called an estimate.
▶ Now does our estimate get better if we increase the size of the sample (or sample size n)?
▶ The answer is Yes - if we have a good sample and we increase the sample size then maybe

we expect that we will eventually be very very close to the target parameter!
▶ What happens if we get a bad sample? Then even if we increase the sample size, our

estimate won’t improve.
▶ There is a famous saying in Statistics, Garbage in Garbage out! This means if you have a

bad sample, then even if you increase the sample size, you will not get a good estimate.
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Estimation

▶ But if we have a good sample, there is a famous law in Statistics, called Law of Large
Numbers, this says if we increase the sample size, then our estimate will get better and
better and we will eventually hit the target parameter! In notation we can write this as

if n → ∞ then x̄ → µ and this happens with very high probability
▶ This is one of the most important results in Statistics, that is with good samples, we can

estimate the target parameter with high accuracy if we have a very large sample.
▶ This idea is also known as Consistency of an estimator, which we will discuss in coming

sections.
▶ So again to summarize, this process of targeting something from the population and then

guessing that with the help of sample is known as Estimation or more accurately this is
called Point Estimation, it’s a concept in Inferential Statistics, but there is another method
known as hypothesis testing, we won’t cover it here you will see it in the next course.

▶ Both estimation and testing are part of inferential statistics
▶ Question - Since we can think the sample is random does this estimate change with different

samples? Ans: obviously YES!
▶ How do we write this? We need to think about random variables.... here the idea of

Estimator comes...
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Estimation

▶ Now let’s consider another data, suppose we collected a data from 10 students, which are
just income of 10 students, and we are interested in the population mean µ.

Income Random variable
1. 20 X1 =?
2. 60 X2 =?
3. 20 X3 =?
4. -20 X4 =?
5. -30 X5 =?
6. -10 X6 =?
7. 80 X7 =?
8. 10 X8 =?
9. 30 X9 =?
10. 40 X10 =?

Table 1: Income data

▶ As you probably already know, a data set can be thought in two ways, a fixed data or a random data.
▶ Note in the left column we have fixed data, but in the right column we have random variables. So X1 is

a random variable, X2 is a random variable, . . ., X10 is a random variable. Important is in the case of
realized data / fixed data, the randomness is gone and we have observed the value.

▶ Generally when we think about n random variables, X1,X2,X3, . . . ,Xn, we will call it a random sample
(the other one is the fixed sample!)

▶ Now we will talk about Estimator.
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Estimation

▶ The idea of Estimator comes when we think about a random sample. An Estimator is a function of a
random sample, hence this is also a random variable. For example an estimator of µ is

X̄ = f (X1,X2, . . . ,Xn) =
1
n

n

∑
i=1

Xi

▶ Now this is not just ordinary sample mean. This is a random variable, since it’s a function of random
variables X1,X2, . . . ,Xn. It’s value will change from sample to sample ....

▶ So now you should always remember the difference between x̄ and X̄ . For a fixed sample x̄ is a fixed
number, but X̄ is a random variable. This is random since it changes from sample to sample. But again,
when we calculate it for a fixed sample, then we get a fixed number x̄ . Here x̄ is a constant and it’s not
random.

▶ So the random variable X̄ is an estimator of µ. And the fixed number x̄ is an estimate of µ.
▶ Now since X̄ is a random variable, question is what is the probability distribution of X̄? or Expectation

of E(X̄ )? Or Var(X̄ )

▶ To understand this we need to talk abut the sampling distribution of X̄ , which we will do in the next
section.
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Sampling Distributions
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Estimator X̄ , E(X̄ ) and Var(X̄ )

▶ Before we dive with the sampling distribution, let’s talk about the estimator X̄ , and it’s
mean and variance. When it comes to X̄ we are interested in 3 important questions when it
comes to estimator,

1. What is the Expectation of the random variable X̄ , written as E(X̄ )?
2. What is the variance of the random variable X̄ , written Var(X̄ )?
3. What is the probability distribution of X̄ (this is what we call sampling distribution of X̄ !)
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Estimator X̄ , E(X̄ ) and Var(X̄ )

▶ We are interested in the first question since we want to know how our estimates (for
example sample means) performs on average. For example the crucial question here is
whether we have E(X̄ ) becomes close to µ.

▶ The answer of the second question tells us how much variability we have in our estimates.
For example if we have Var(X̄ ) is small, then we know that our estimate is always close to
µ (this is good!). But if we have Var(X̄ ) is large, then we know that our estimate is not
always close to µ (this is a bad!)

▶ The answer to the third question is what we call Sampling Distribution of Sample Means.
Note that, this is the distribution of sample means x̄ , that we get from repeated sampling!

▶ Definitely if we know the answer of 3, we know the answers of 1 and 2.
▶ Let’s try to understand with the following picture. Suppose we do sampling many times

and calculate x̄ many times, here are four situations that can happen, at the center we
have µ and the black dots are the estimates x̄ for different samples.
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Estimator X̄ , E(X̄ ) and Var(X̄ )

Figure 2: bias variance situations, true value µ is at the center, and the black dots are estimates or
x̄ . Here in all four situations think about repeated sampling, i.e., we are calculating x̄ in repeated
sampling.

▶ 1. top-left: Here sometimes the estimates are hitting the target, but their accuracy overall is really
bad. You can say on average they are performing well, but there is a lot of variability. This is what
we call low-bias & high-variance situation.

▶ 2. bottom-left: This is better than the last one (in fact this is the best one) here estimates are
always very close to the truth and also the variability is very low. This is what is called low-bias &
low-variance situation. This is ideally what we want.

▶ 3. bottom-right: In this case the variability is not high, but the estimates are more or less always
very off from the target. This is called high-bias & low-variance situation. This is not good, even if
we have low variance.

▶ 4. top-right: This is the worst case, here the estimates are always very off from the target and also
the variability is very high. This is called high-bias & high-variance situation.
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Estimator X̄ , E(X̄ ) and Var(X̄ )

▶ Definitely we want

E(X̄ ) = µ

▶ If this happens we call X̄ an “unbiased” estimator of µ. It means the sample average is a
“good” estimator for the population mean µ. So you can think - if we calculate, sample
means many times, on average we are not doing a bad job, even if our sample size n is not
that big.

E(X̄ ) = µ

▶ Compare this with consistency!
▶ Now let’s talk about the sampling distribution of X̄ . This is the distribution of X̄ when we

do repeated sampling.
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Sampling Distributions

Sampling distribution of X̄
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Estimator X̄ , E(X̄ ) and Var(X̄ )

▶ We will state three important results, related to the sampling distribution of X̄ .

Theorem 5.2: (Mean and Variance of X̄ with only i.i.d assumption)

Suppose the population distribution have mean µ and variance σ2 and sample points are
independent, then

E (X̄ ) = µ and Var (X̄ ) =
σ2

n (1)

▶ How do we get this? The proof is very simple, just uses the rule for Expectation and
Variance. First let’s understand the result and then we will also see how we got this,
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Estimator X̄ , E(X̄ ) and Var(X̄ )

▶ Note that, in this result we don’t have any distributional assumption (i.e., we are not assuming
they are normal or binomial or anything else...), we are assuming that the population mean
and variance exists and we have i.i.d sample points.

▶ If we think about X1,X2, . . . ,Xn random variable this means we have independent and
identically distributed random variables (i.i.d) with the same mean µ and same variance σ2.
Again to explain further, this means

1. X1,X2, . . . ,Xn random variables are independent,
2. X1,X2, . . . ,Xn have same probability distribution where we have

E(X1) = E(X2) = E(X3) = . . . ,E(Xn) = µ, and also
Var(X1) = Var(X2) = Var(X3) = . . . ,Var(Xn) = σ2

▶ Finally you should always keep in mind that X̄ is a random variable, since it’s a function of
random variables X1,X2, . . . ,Xn.

▶ Now let’s see the details....
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Estimator X̄ , E(X̄ ) and Var(X̄ )

▶ We know that E(Xi ) = µ and Var(Xi ) = σ2, then we can apply the rules for expectation
and variance.

E(X̄ ) = E

(
1
n

n
∑
i=1

Xi

)
=

1
n

n
∑
i=1

E(Xi ) =
1
n

n
∑
i=1

µ =
n × µ

n = µ

Var(X̄ ) = Var

(
1
n

n
∑
i=1

Xi

)
∗
=

1
n2

n
∑
i=1

Var(Xi ) =
1
n2

n
∑
i=1

σ2 =
n × σ2

n2 =
σ2

n

▶ For expectation this is simply the rule for expectation - Expectation of sum of independent
random variables is the sum of expectation of each random variable.

▶ For the variance we used the fact that Xi ’s are independent, so we can apply the rule for
variance for the sum of independent random variables. In particular we used the fact that

Var(X1 + X2) = Var(X1) + Var(X2) if X1 and X2 are independent
▶ Finally we also used the fact that Var(aX ) = a2Var(X ) for any constant a.
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Estimator X̄ , E(X̄ ) and Var(X̄ )

▶ Careful if they are not independent then this is not true! we will have

Var(X1 + X2) = Var(X1) + Var(X2) + 2Cov(X1,X2)

▶ When we have independence, covariance is zero, so we get

Var(X1 + X2) = Var(X1) + Var(X2) + 2 Cov(X1,X2)︸ ︷︷ ︸
=0

= Var(X1) + Var(X2)
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Estimator X̄ , E(X̄ ) and Var(X̄ )

Theorem 5.3: (Distribution of X̄ with Normality and i.i.d assumption)

If the population distribution is N (µ, σ2) (this means population is normally distributed with
mean µ and variance σ2) and the sample points are independent, then

i) E (X̄ ) = µ and Var(X̄ ) =
σ2

n [ this is same as the last one ]

ii) X̄ ∼ N (µ,
σ2

n ) from transformation Z ∼ N (0, 1) where Z =
X̄ − µ

σ
√

n

iii) t ∼ tn−1 where t =
X̄ − µ

S
√

n

and S2 =
1

n − 1

n
∑
i=1

(Xi − X̄ )2

▶ Careful Here S2 = 1
n−1 ∑n

i=1(Xi − X̄ )2 is sample variance but we are thinking it as a
random variable (so its value changes in repeated sampling). This makes t a random
variable which is a function of random variables X̄ and S.

▶ Number iii) says if we replace σ with S (this means replacing population standard deviation
with sample standard deviation), we get a new random variable t, which follows t
distribution with n − 1 degrees of freedom. This is called Student’s t-distribution.

▶ Here n − 1 is the parameter of the t distribution. This parameter has a special name, it is
called degrees of freedom.

31 / 41



Estimator X̄ , E(X̄ ) and Var(X̄ )

▶ Also note here X̄ is a statistic, Z is a statistic and also t =
X̄−µ

S/
√

n is a statistic (Recall a
statistic is a function of a random sample).

▶ In practical cases we don’t know the population standard deviation σ, so we use the sample
standard deviation S to estimate σ. Since

√
Var(X̄ ) = σ√

n , is the standard error of the
sample mean X̄ . S/

√
n is called the estimate of the standard error of the sample mean.

▶ Note that this result assumes stronger assumption than the last one, we are assuming
population is normal.

▶ The next theorem will relax this assumption but we will need large n.
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Estimator X̄ , E(X̄ ) and Var(X̄ )

Theorem 5.4: (Central Limit Theorem (CLT) and related results)

Let X1,X2, . . . ,Xn be i.i.d random variables that follow any distribution with population mean µ
and variance σ2. Then for large n (technically we need n → ∞), we get following results:

i) Z approx∼ N (0, 1) where Z =
X̄ − µ

σ
√

n

[CLT] (2)

ii) X̄ approx∼ N
(

µ,
σ2

n

)
iii) T approx∼ N (0, 1) where T =

X̄ − µ

S
√

n

▶ This is one of the most important results in Statistics. This is called Central Limit Theorem
(CLT). This says if we have a large sample size, then the distribution of X̄ will be
approximately normal.

▶ i) says without any distributional assumption the Z statistic will be approximately normal in
large samples.

▶ ii) says the sample mean X̄ will be approximately normal in large samples.
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Estimator X̄ , E(X̄ ) and Var(X̄ )

▶ iii) says the T statistic will be approximately normal in large samples. You should compare
this T with t in Theorem 5.3 iii). Both are same, so in calculation there is no difference
but in assumptions there is a big difference. In Theorem 5.3 iii) we are assuming the
population is normal, but here we are not assuming anything about the population. In that
case t statistic follows t distribution, but here the sane statistic T follows normal
distribution in large samples.
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Important Remarks on Sampling Distribution of X̄

▶ So we understood that the idea of the sampling distribution is a repeated sampling idea. In real
life you can only have one sample, so you can never calculate this using a sample data.

▶ The last three results tell us that, we can only know the sampling distribution of means
under certain assumptions (in particular we need either normality or large sample size)

▶ If we assume normality (this means our data is normally distributed), then the distribution
of the sample means is also normal and this result is for any sample size! This is called the
exact distribution!

▶ If we don’t assume normality for the population, then usually we have no hope, except for
large n.

▶ The standard deviation of sampling distribution is called standard error! This is standard
deviation, but this name is special for sampling distribution.

▶ In general any function of the random sample X1,X2, . . . ,Xn is called a “Statistic”, so an
estimator is also a Statistic. The difference is Estimator is a type of Statistic where we are
estimating some target! A statistic might not have any goal, it’s just a function of random
variables X1,X2,X3, . . . ,Xn! The distribution of statistic is called sampling distribution.

▶ For example, X̄ , Z in Theorem 5.3 are both examples statistics but X̄ is an estimator for µ,
Z is just a statistic.

▶ Another example is S2, where S2 = 1
n−1 ∑n

i=1 (Xi − X̄ ) 2. This is a statistic since it’s a
function of the random sample. And this is also an estimator for σ2, because it is targeting
population variance σ2. Note that S2 is just a sample variance.
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Sampling Distributions

Sampling Distribution of Sample Proportions, i.e., Sampling
distribution of p̄
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Sampling Distribution of p̄

▶ Sampling distribution of sample proportion is just a special case of sampling distribution of
sample means, except now we are considering sample mean of Bernoulli random variables.

▶ Let’s first think what is a population proportion? Suppose we have a large population and
there are certain proportions of females in this population, let’s call this number p. This is
the population proportion. Now we can think about taking a sample of size 10 from this
population such that all the rows are independent.

Income Random variable
1. 1 X1 =?
2. 1 X2 =?
3. 0 X3 =?
4. 0 X4 =?
5. 1 X5 =?
6. 0 X6 =?
7. 1 X7 =?
8. 0 X8 =?
9. 1 X9 =?
10. 1 X10 =?

Table 2: Income data
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Sampling Distribution of p̄

▶ Here 1 means Female and 0 means male. Again like before the left column is the
observed/realized sample and in the right column we are thinking in terms of random
variable X1,X2,X3, . . . ,Xn

▶ In this case we can think the random variables X1,X2,X3, . . . ,Xn are all distributed as
Bernoulli distribution with parameter p, in other words we have

Xi ∼ Ber(p) for all i = 1, 2, 3, . . . , n
▶ Now we can think about an estimator for population proportion p

p̄ =
1
n

n
∑
i=1

Xi

▶ This is an estimator because for a fixed sample, p̄ is a fixed number, but for a random
sample p̄ is a random variable.

▶ Now let’s apply Theorem 5.2 and 5.3. Since by assumption X1,X2,X3, . . . ,Xn are all
independent and they all follow Bernoulli distribution with parameter p, we have

E(p̄) = p and Var(p̄) = p(1 − p)
n
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Sampling Distribution of p̄

▶ How do we get this? Same as before, note that here

E(Xi ) = p and Var(Xi ) = p(1 − p) for i = 1, 2, . . . , n
then applying the rules for expectation and variance, we get

E(p̄) = E

(
1
n

n
∑
i=1

Xi

)
=

1
n

n
∑
i=1

E(Xi ) =
1
n

n
∑
i=1

p = p

Var(p̄) = Var

(
1
n

n
∑
i=1

Xi

)
∗
=

1
n2

n
∑
i=1

Var(Xi ) =
1
n2

n
∑
i=1

p(1 − p) = p(1 − p)
n

▶ So we know that

E(p̄) = p and Var(p̄) = p(1 − p)
n

▶ Now let’s talk about the sampling distribution of p̄. In this case we can apply Theorem 5.4
i), which is a large sample result without any distributional assumption, so we get

p̄ ∼ N
(

p, p(1 − p)
n

)
also using transformation Z ∼ N (0, 1), where Z =

p̄ − p√
p(1−p)

n

▶ Here
√

p(1−p)
n is the standard error of p̄, or you can say this is the standard deviation of the

sampling distribution of p̄.
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Sampling Distribution of p̄

▶ Now the issue with the Z statistic is that we don’t know the population proportion p. So
we can’t use Z statistic in practice, solution? use the sample proportion p̄ to estimate p,
and then construct the t statistic.

▶ In his case we can apply Theorem 5.4 iii), which is a large sample result without any
distributional assumption and also without assuming we know p, so we can form the t
statistic

T =
p̄ − p√

p̄(1−p̄)
n

∼ N (0, 1)

▶ You should compare this with the t statistic in Theorem 5.4 (iii), this is exactly same, now
we are using p̄ instead of X̄ , and we are using

√
p̄(1 − p̄) instead of S.

▶ In ECO204 you will see t statistic many times, and all of them will follow the same
structure,

t =
estimator − E (estimator)

(estimate of the standard error)
▶ And often in large samples (at least the cases that you will encounter), the distribution of

the t statistic will become standard normal. Hence we can use the standard normal
distribution to calculate the probability of the t statistic.

▶ More on this on ECO204...

40 / 41



References

Anderson, D. R., Sweeney, D. J., Williams, T. A., Camm, J. D., Cochran, J. J., Fry, M. J., and Ohlmann, J. W. (2020). Statistics for Business &
Economics. Cengage, Boston, MA, 14th edition.

41 / 41


	Sample, Population and Statistical Inference
	1. Sample and Random Sample
	2. Statistical Estimation

	Sampling Distributions
	Mean and Variance of 
	Sampling distribution of 
	Sampling Distribution of Sample Proportions, i.e., Sampling distribution of 


